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Don’t Panic!

Yes, this is a physics course. But if you understand why you are taking it, then you’ll see
that it’s not such a bad thing. Even better, you’ll know what you need to get out of this
course to prepare for the later courses in your program.

First: I do not need you to become a physicist! Physics comes by its bad reputation
honestly. Describing the universe precisely can be done, but most times requires extremely
complicated mathematics and abstract thinking. That is true in cases like exploring what
happens when you fall into a black hole, or asking about the quantum mechanics of the
atom. But we are not going to consider such esoteric things! This course is about getting
you ready to become a Physiotherapy Technologist. Our focus is the human body.

Second: What you learn in this course is structured to prepare you for the courses you
will be taking later in your program. You need to know about forces (pushing), torques
(twisting), and materials (bending) to prepare for reasoning about Biomechanics. You need
to know about energy (heat), waves (sound), and electricity to prepare for the use of Elec-
trotherapy. The focus is not on the mathematical descriptions. Yes, to make things concrete
there will be math, but our focus will be on how to think about these core ideas conceptually.
I do not need you to become a physicist, but I do need you to learn how to think physically.

Third: This text is meant for you to read! Reading this before class will prepare you for
what we will be doing in class. It is not expected that you will gain a complete understanding
just by reading. What is expected after your first reading of any topic is that you will have
questions. Read this, and then bring those questions to class. There we will work together
to understand and answer them.

– Chris Roderick
2019 August 21

Updated 2022 August 18
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Chapter 0

Preparation
Yes, this is chapter “zero”. This is not a course about math, but we will use math. So, before
we get to chapter 1 (where we’ll start to think about Forces), we need to review a few topics.
These will be things that you have seen (or, at least, were supposed to have seen) in your
high school math and science courses:

• Units
• Trigonometry
• Vectors

The “units” I’m talking about here are the standard S.I. units of metres and kilograms. We
need to remember what units are appropriate for which quantities, and we need to know
how to convert units. “Trigonometry” means the mathematics of triangles and angles, and
the functions sine, cosine and tangent. That math will be needed for when we work with
vectors, which describe forces.

One other topic you may or may not have seen is

• Logarithms

The logarithm function will be used when we explore sound and how we measure “loudness”,
in chapter 5.

There will be many practice problems here. It is not expected for you to finish them all
before we move on to the other topics in the course, so do make a point of coming back here
to work on them incrementally, or to re-do them as you find necessary.

0.1 Units of Measurement

Back in the 1970’s Canada began the move away from the Imperial System of Measurement
and towards using Le Système International d’Unités (sometimes referred to as the Metric
System, but commonly known as the SI). By the mid-1980’s the public school systems and
most governmental organizations had almost completely made the shift. But Canadian
society, as a whole, can not be exclusively Metric. Because our largest trading partner, the
United States of America, uses the Imperial system of measurement our industrial and
public sectors can not completely move away from the use of inches and feet, and ounces
and pounds. While the fundamental system of measurements used in this text will be the
SI, we can not afford to be ignorant of the Imperial system.

0.1.1 What does it mean to measure?

To measure something is to compare it to a standard. Lengths are determined by placing the
thing next to a calibrated ruler. Mass is determined by balancing the thing with an equal
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amount of calibrated masses. A time is measured by noting the coincidence of an event with
a “tick” on a clock.

The result of measuring something is usually to state what multiple of that standard
the thing is. “How thick is this book?” Three and a half centimetres. “How heavy is that
bicycle?” Eighteen kilograms. “When does this class begin?” In six minutes.

CRITICAL : Include the Units

A quantity without units has no meaning.

If a measurement of a quantity is made using two different units, the measurements
will have different numerical values. For example, if I measure the mass of my cellphone
using kilograms and using pounds, I get the values 0.170 kg and 0.375 lb. Even though the
numerical values are different these measurements are the same. A pound of mass is less
than half a kilogram. Using a smaller unit gives a larger number. This is so important that
I will say it again:

Using a smaller unit gives a larger number.

Remember this whenever you do any units conversion. It can help you check your result.

0.1.2 Length

If I ask you to measure something, you would probably reach for your ruler. Length is not
the only physical quantity we can measure, but I think that is the first one that most people
associate with the idea of “measuring something”.

If I ask you to measure the length of your cellphone with a ruler, you might answer
me with something like “15.8 cm”. If I ask someone else to measure the length of your
cellphone using their metre stick, they might answer me with something like “0.16 m”. If
we later refer to the manufacturer’s website we would find that the length of the cellphone
is specified as 158.2 mm. We each may have each found slightly different numerical values,
but the important feature is that these values do not disagree, that they are consistent with
each other.

Each of our measurements of length, made with Metric units, are expressed as a multiple
of a metre. The metre is the base unit of length in the Metric system. Lengths, areas, and
volumes are expressed as multiples and products of the metre. (Notice the spelling: a metre
is the base unit of length in the Metric system; a meter is the noun used to refer to a device
for measuring something, like an ammeter for measuring electrical current.)

Conversion between SI measurements of length involve powers of ten. Specifically, the
primary multiples of length in the SI are related by multiples of one thousand (1000 =
10×10×10 = 10+3). One kilometre is one thousand metres (1km = 1×10+3 m = 1000.m,
exactly). Kilometres are large enough to be useful for measuring distances across the Earth,
for example, between cities. One millimetre is a thousandth of a metre (1mm= 1×10−3 m=
0.001m, exactly).

Two other multiples you may have heard of are the micrometre (1µm = 1×10−6 m) and
the nanometre (1nm = 1×10−9 m). The micrometre is used in engineering to specify the
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precise sizes of machine parts. The nanometre is scale at which the circuitry in computer
chips is formed. In the biological context, a human red blood cell is about eight micrometres
in diameter, while the size of the hemoglobin molecules that cell carries are each about seven
nanometres in diameter.

The most-used exception to that pattern of thousands is the centimetre. A metre is too
large a unit for objects that a person might manipulate with their hands. Most cellphones
are much smaller than a metre in size. Sandwiches, too. So a more reasonable, more human-
size unit is the centimetre, which is a hundredth of a metre (1cm = 1× 10−2 m = 0.01m,
exactly). By this definition there are ten millimetres in a centimetre (10.mm= 1.0cm).

name: nano micro milli kilo mega giga

symbol: n µ m k M G

power: 10−9 10−6 10−3 1 10+3 10+6 10+9

These prefixes apply to all SI units, not just length. The table here shows the range that
will be of use to use in this course. (There are other larger and smaller prefixes, but they
are of no use in this course.) Being able to express these prefixes as the correct power of ten,
and being able to convert from one prefix to another, is an important skill to develop.

Example 0.1 : That’s a lot of change . . .

The Canadian one-dollar coin (the “Loonie”) is a disk of diame-
ter 26.5 mm and thickness 1.95 mm. A “roll” of Loonies is $50
stacked in a cylinder, measuring 50×1.95mm = 9.75cm from
end-to-end. If you could stack Loonies into a cylinder one kilo-
metre long, how much money would that be?

To find the amount of money, we need to find the number of Loonies. The number of
Loonies times the thickness of a single Loonie must equal a kilometre (10+3 m). Since
each coin is on the order of a millimetre (10−3 m) we should not be surprised if we have
something like a million dollars!

The relation “the number of Loonies times the thickness of a single Loonie equals a
kilometre” has the equation

n×1.95mm= 1.00km (1)

n = 1.00km
1.95mm

= 1.00×10+3 m
1.95×10−3 m

= 5.13×10+5 (2)

This is a little more than half a million coins, with an approximate value of five hundred
and thirteen thousand dollars.

Important: To evaluate the numerical value of the ratio of lengths we had to ex-
press both in terms of the common unit of metres. If we had left the lengths in their
original units (km & mm) our “answer” would have been 0.513. That would have said
that a kilometre-long stack of Loonies was worth half a dollar, which is clearly nonsense.
Remember to always be explicit about your units in your calculations.
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Imperial Lengths

There are many, many different units of length in the Imperial system. For the purposes of
this course there are only two that we will be using: the inch and the foot. These are im-
portant as they are the two Imperial units that might used in the measurement of patients’
bodies, and of human-scale objects like furniture, buildings and vehicles.

Since 1930 the inch has been defined to be

1in= 25.4mm (3)

The value 25.4 mm is an exact value, not a number with only three significant figures. This
redefinition was done to insure that the inch standard of measure could be reproduced accu-
rately. The subsequent accuracy follows from the precision with which metric distances can
be determined and reproduced scientifically. The feature of this definition that is important
to us is that the inch is larger than a centimetre. Consequently measurement of length in
centimetres will have a larger value than when measured in inches.

A foot of distance is defined to be 12 in exactly. Due to the definition of the inch, a foot
is 30.48 cm exactly. If you ever wondered why your school ruler was a 30 cm ruler, wonder
no more: Companies used to make foot-rulers and it was cheaper to keep making rulers the
same length, using the same amount of material, and just change the markings on them!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30cm

0 1 2 3 4 5 6 7 8 9 10 11 12inch

This ruler is not to scale. Sorry.

Lengths measured in Imperial units that are greater than twelve inches are usually
written as the sum of a length in feet and a length in inches. For example, a length of
55 inches is equivalent to

55in= 4×12in+7in= 4ft+7in (4)

which is written 4ft 7in, or more conventionally as 4′7′′.

Example 0.2 : What’s that measured in . . . ?

A patient tells you they are 5ft 10in tall. What is that in metres? You ask them to try
lifting a hand to height of 2.00 m above the floor. What is that measured in feet and
inches?

We know that 30 cm is approximately 1 foot. The patient’s height is almost 6 feet, which
should be about 180 cm. Going back the other way, 200 cm should be a little less than
7 feet.

To convert feet and inches to metric begin by expressing the imperial measurement
entirely as a multiple of inches:

5ft+10in= 5×12in+10in= 70in (5)

Then convert the number of inches to centimetres, then to metres:

70in= 70×2.54cm= 178cm= 1.78m (6)
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To convert the metric measurement to feet and inches, reverse the steps taken above:

2.00m= 200cm= 200× ( 1
2.54 in)= 78.7in= 6×12in+6.7in= 6ft+7in (7)

This is only 9 inches above their head. Unless they have a limited range of motion in
their shoulder, they should be able to reach this height.

There are two other Imperial units of length that might have heard of: the yard and the
mile. A yard of distance was defined to be three feet, which is slightly less than a metre
(3ft = 3×12×2.54cm = 91.44cm). A mile of distance was defined to be 5280 ft. Due to the
current definition of the inch in terms of the millimetre (1 in = 25.4 mm) a yard of distance
equals 0.9144 m and a mile of distance is now defined to be 1609.344 m. For quick reference
you can think that a yard is about one metre. Since a mile is a little more than a kilometre
and a half (1.6 km), distances in miles will be smaller numbers than measured in kilometres.
These two units are really only of interest if you are reading or watching news or sports from
the US.

0.1.3 Areas & Volumes

Like a square metre,
only smaller.

Hello, old friend.

In the photograph above on the left is a paper square that measures 7.4 cm by 7.4 cm.
If it were a square measuring 1 m by 1 m then we would say that its area was one square
metre, written as 1m2. (Notice carefully the exponent over the symbol for the unit of length.)
So what fraction of a square metre is piece of paper in the photograph?

For a flat surface, you know the rule: the area is the width multiplied by its height. The
area of the square in the photograph, measured in square metres, is

(7.4cm)× (7.4cm)= (0.074m)× (0.074m) (8)
= (0.074×1m)× (0.074×1m) (9)
= (0.074×0.074)× (1m×1m) (10)

= 0.005476×1m2 (11)

Take your time, and follow the steps in the calculation above. Since our goal is to find
the area in square metres begin by converting all lengths to metres. Then separate the
numerical factors from the units. The last step is to recognize that a square metre is the
quantity “1m×1m”.
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A 2in-by-2in square, divided
into square inches.

A 2in-by-2in square, divided
into square centimetres.

The picture on the left makes it clear that 2 in×2 in = 4 in2. The way that you should
think about areas is like this:

4 in2 = 4×{
(1 in)× (1 in)

}
(12)

Our measurement of the area is four increments, where each increment is a square that
measures one inch by one inch. What is this 4 in2 area when measured in square centime-
tres? The picture on the right, where the area is divided up into square centimetres, makes
it clear that there are more cm2 than in2 since they are smaller. (Remember: smaller unit,
larger number.)

When we need to convert units of area, we must convert each of the units of length
that combine to make the unit of area. To follow this, I will color-code the pieces. With
1 in= 2.54cm, we get

4 in2 = 4×{
(1 in)× (1 in)

}
(13)

= 4×{
(2.54cm)× (2.54cm)

}
(14)

= {
4×2.54×2.54

}×{
(1cm)× (1cm)

}
(15)

= 25.8×{
1cm2} (16)

= 25.8cm2 (17)

Contrast this process of converting areas with the conversion of the length 4 in= 4× (2.54×
1cm)= 10.16cm.

The same process must be followed when we convert between square metres and square
centimetres we must convert each of the units of length. For example:

8807cm2 = 8807× (1cm2) (18)
= 8807× (1cm×1cm) (19)
= 8807× (0.01m×0.01m) (20)
= 8807× (0.01×0.01)× (1m×1m) (21)

= 0.8807×1m2 = 0.8807m2 (22)

If we were converting a length in centimetres into a length in metres, then we would only
move the decimal over two places. But, for an area we need to convert both the length and
width, and we move the decimal over two and then two again (a conversion for each of the
length and the width).
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The Litre

The metric unit of volume is the litre. It is defined to be the volume of a cube whose sides
are 10cm each. (Get out your ruler and visualize a cube with this volume!) This volume is a
small fraction of a cubic metre: (10cm)3 = (0.10m)3 = 0.001m3.

The symbol for the litre is upper-case L. (Sometimes you might see the symbol “ℓ” being
used; but we will use L.) Because of this definition a cubic meter has a volume of 1000L,
and a cubic centimetre has a volume of on millilitre:

1cm3 = 1mL (23)

As with conversions of areas, when we convert units of volume we must convert each of unit
of length that combines to make the unit of volume.

Example 0.3 : Converting volumes

How many cubic centimetres are in a 2.7 L volume?

The relation between the number n of cubic centimetres and the volume given is

n×1cm3 = 2.7L (24)

Isolating the number n we can then calculate by expressing all quantities in terms of
base SI units:

n = 2.7L
1cm3 = 2.7× (10−1 m)3

1× (10−2 m)3 = 2.7×10−3 m3

1×10−6 m3 = 2.7×10+3 (25)

This shows that 2.7 L is equal to 2 700 cubic centimetres.

Another, more direct, way to do this conversion is to express the litre directly in
terms of cubic centimetres:

2.7L= 2.7× (10cm)3 = 2.7× (10+3 cm3)= 2700cm3 (26)

A cubic centimetre (1cm3) is often given the symbol “1 cc”. The preceding example shows
that one cubic centimetre is equal to a volume of one-thousandth of a litre, the millilitre:
1 cc= 1mL.

■PICTURE: photo: 2L pop bottle inside a cubic metre

While the gramme was too small a unit of mass (leading to the choice of the kilogram
for the base unit), a cubic metre is too large a unit of volume for day-to-day human-scaled
applications. A two-litre bottle of carbonated beverage is a size you are probably familiar
with. Calling this volume “2 L” is more practical than calling it “0.002m3”.

0.1.4 Mass

Mass is the physical property of an object that relates to the amount of material that com-
poses it. Mass is not size, as a cube of aluminum and a cube of iron of identical sizes will
have different masses (the iron having almost three times as much mass).
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The gramme (in modern usage written gram) was defined to be the mass of a cubic
centimetre of water that is just above its freezing point. If you just look at a cubic centimetre
you can appreciate that it is not really large, and that a gram would be a really small unit
of mass. For practical reasons the kilogram became the base unit of mass in the Metric
system. This also corresponds to the mass of a 1 L volume of water. (For reference, note that
a 2 L container of cola has a mass of 2 kg, approximately. This is a useful number to keep in
mind when trying to grasp the size of a mass you might have calculated.)

Imperial Masses

One of the imperial units of mass is the pound, defined to be 0.45359237 kg exactly. This
means that 1 kg is approximately 2.2 pounds. The origins of the pound as a unit of mass are
traced back to the ancient Roman empire, where the unit was then called the “libra”. For
this reason the unit symbol for the pound is “lb”.

Although the kilogram is the base unit of mass, it is most likely that any patient you
treat will know their mass in pounds but not in kilograms. This is a vestige of the transition
from imperial units to metric happening in their lifetime. Consequently knowing how to
convert between pounds and kilograms may be necessary for the purposes of collecting and
interpreting patient data. Since the pound is a smaller unit than the kilogram a mass
measured in pounds will have a larger numerical value than the same mass measured in
kilograms. (For reference note that 100. lb= 45.4kg, and 220. lb= 100.kg, approximately.)

“Weight”

The weight of an object is defined to be the amount of force required to hold it up against
gravity. In your day-to-day life weight and mass are proportional to each other, and that
proportionality is a constant: w = mg. For this reason in day-to-day, non-scientific contexts a
person’s mass is usually referred to as their “weight”, and “weighing” someone is to measure
their mass. (This is technically incorrect, but everyone understands it by the context.) We
will study the difference between mass and weight in more detail in sub-section 1.2.4.

0.1.5 Time

Changes take time to happen. The base unit of measurement of time is the second. The
second is Metric. But the minute, hour and day are not. These inter-relationships you
should know and have memorized:

1minute= 60s (27)
1hour= 60minute= 3600s (28)
1day= 24hour (29)

Converting between hours, minutes and seconds will be done quite frequently in this course
– be certain to practise those conversions. The larger units of time (the week, month and
year) will not be used very often. There are three common abbreviations used when mea-

Ch.0 Preparation 8 Text for PPT {α13} October 24, 2022



suring intervals of time:

1min= 1minute (30)
1h= 1hour (31)
1d= 1day (32)

It will be important to watch for the context when reading or using these symbols so that
they do not get confused for the “min” function of mathematics, and the Metric prefixes for
“hecta” and “deca”, respectively.

The second is the base unit of time in the Metric system. But, in the context of Phys-
iotherapy, times are often measured in minutes and hours. To perform calculations while
handling units correctly it is almost always required that we express time intervals in sec-
onds. We will practise conversions of this type in class. The importance of the correctness of
the units used to measure time is manifest in the next subject: rates.

0.1.6 Rates

The relation that defines a rate is

change= rate× time (33)

If a quantity changes, and we have a measure of the time it took for the change to happen,
then we can talk about the rate of change. If the changing quantity is position, then the
rate is what we call speed, measured in metres per second (or kilometres per hour). If the
changing quantity is speed, then the rate is acceleration, measured in metres per second
squared (m/s2). If the changing quantity is an amount of liquid or gas, then we can talk
about the rate of mass (kilograms per second) or rate of volume (litres per second). If the
changing quantity is energy, then the rate is power, measured in joules per second (which
defines the unit watt). If the changing quantity is electric charge, then the rate is electric
current (one of the topics in chapter 6) measured in coulombs per second (which defines the
unit ampere).

In the chapter on Waves (chapter 5) we will study the physics of oscillation and sound.
Oscillation, or repeating motion can be measured two ways: the time between repetitions,
or the number of repetitions in an amount of time. The latter choice (repetitions per second)
is called the frequency. Frequency is measured in units of repetitions per second, but a
“repetition” is not really a unit in the same way that a metre is unit. But when we write out
the terms being used to calculate a frequency it is good practice to include “rep” next to the
quantity of repetitions so that we can explicitly check that we are correctly forming a ratio
that will result in a frequency.

The unit used to measure frequency is hertz, defined by

1rep
1s

= 1hertz= 1Hz (34)

For example, if an object moves repeatedly back-and-forth thirty-seven times in 1.80 s, then
the frequency of the object’s oscillation is

37.0rep
1.80s

= 37.0
1.80

· rep
s

= 20.6Hz (35)

Ch.0 Preparation 9 Text for PPT {α13} October 24, 2022



We will study phenomena like this in chapter 5.

As with conversion of areas, when we convert rates we must be careful to convert all
factors to the base SI units. For rates, which are defined by ratios of quantities, we must
convert both the numerator and the denominator. Using the correct unit of time is critical.
As a concrete example of this, consider speed.

Speed

Velocity is a vector that quantifies the motion of an object. The direction of that vector is the
direction the object is moving. The magnitude of that vector is the rate at which the object
is moving in that direction. That magnitude is called the speed. Velocity is a vector, and its
magnitude – the speed – is a number. In the Metric system the units we will be using to
measure speed are metres per second (m/s), and sometimes kilometres per hour (km/h).

As an example of the difference between the changes and the rate of change: I shuffle to
my kitchen in the morning to get my coffee, travelling 5 metres in 9 seconds. My speed is

5m
9s

= 400×5m
400×9s

= 2000m
3600s

= 2km
1h

= 2km/h (36)

The point of this example is to notice that, while my speed is 2 km/h, I did not travel 2 km
and I did not travel for an hour. I was traveling at a speed that, after an hour, would take me
2 km, but after the 9 s of my trip had only taken me 5 m. Remember this example to clarify
the difference between the rate at which change is happening and the amount of change
that has happened.

The conversion between a speed measured in km/h and the same speed measured in
m/s is not obvious. Our rule of “bigger unit, smaller number” doesn’t help us immediately
because the kilometre is bigger than the metre, but the hour is also bigger than the second.
So it is not immediately clear if 1 km/h is bigger than or smaller than 1 m/s. The conversion
can be determined as follows:

1 km
h = 1× 1000m

3600s ≈ 0.2778 m
s (37)

And the other way around

1 m
s = 1× ( 1

1000 km)

( 1
3600 h)

= 36
10

km
h (38)

(The answer here is written as a fraction to show that the result “3.6” is an exact number.)
From this we can see that km/h is a smaller unit of speed than the m/s. (For reference note
that 100.m/s= 360.km/h, and 100.km/h= 27.8m/s, approximately.)

There are other, similar measures of speed in the Imperial system of measure (feet per
second, and miles per hour). You will look at those in some of the exercises.

Rates that aren’t Time

The idea of “rate”, introduced above, was built on the idea of measuring “how fast”; the idea
of the variation with time. Mathematically, we had

change= rate× time (39)

Ch.0 Preparation 10 Text for PPT {α13} October 24, 2022



But this idea of rate can be generalized. When paying for food, gasoline, or electricity we
are used to thinking about price per mass, per volume, or per joule. So, in general, a rate is
an inter-relation between two quantities:

change in A= rate×change in B (40)

(where “A” and “B” are the inter-relating quantities). When we graph an inter-relationship
we have this definition:

∆y= slope×∆x (41)

This you have seen in your high school maths. In the context of this course (and in your
program) our focus is now on how the units are related.

Food items are usually sold on a price per mass basis. For example, on the day that I’m
writing this, red onions are being sold for $5.49

/
kg at my local grocery store. By law in

Canada nutritional information is required on packaged foods. Food, obviously, provides our
bodies with chemical energy. On nutrition labelling this is written as the number of calories
per mass, per volume, or per “serving”. For example, whole-grain “Goldfish” crackers are
90 calories per 37 crackers (listed as 20 g), which is an energy per mass.

Gasoline is an everyday item that we are used to thinking of in proportion to its volume.
On the day that I’m writing this “regular” grade is being sold for $1.05

/
L at my local gas

station. In a manner similar to nutritional information for food, there is a relation between
volume of gasoline and energy released by combustion: 42 MJ/L.

Given two blocks of equal volume, one made of wood and one made of iron, the block
of iron will have a greater mass. The proportionality between volume and mass is called
density, and is symbolized by the Greek letter rho ρ:

mass= density×volume (42)
m = ρV (43)

Density is a characteristic property of an object, one that usually lets us identify what ma-
terial it is made of. The units of density are kilograms per cubic-metre (kg/m3) – the rate is
mass per volume.

0.1.7 Force

Force is the subject of chapter 1. In that chapter we will take some time to carefully try to
define what a force is. For us, now, we can just think of this as a push or a pull. Our job here
is to explain what units we must use to measure a force.

I don’t doubt that you remember Newton’s 2nd Law: F⃗ = ma⃗. Can we figure out the
units on the right-hand side of this equation? Mass (kg) times acceleration (m/s2) must
equal force, and so must have the same units as force. The result, that force has units
kg ·m/s2, will be a little awkward to have to keep writing out every time we need to specify
a force. For this reason we define the unit

1 newton= 1 kilogram ·metre
/

second2 (44)

1N= 1kg ·m/s2 (45)
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When a unit is named after a person it is convention to write the full name of the unit using
lower-case, and the symbol for the unit as an upper-case. (Because “Newton” was the person
and “newton” is the unit.)

The newton is an example of a compound unit; one that is composed of some products
and/or ratios of the base Metric units. Other compound units that you will have seen in
high school are the joule (1J = 1kg ·m2/s2) which measures energy, and the pascal (1Pa =
1N/m2 = 1kg

/
m ·s2) which measures pressure. The purpose of defining a compound unit is

simple: to write less. While the equivalent expression in the base units is important to be
quantitatively correct, conceptually you should focus on associating a compound unit with
the type of quantity it is used to measure. Knowing that a joule is 1kg ·m2/s2 is usually not
as important as looking at a quantity measured in joules and thinking about the concept of
energy.

0.1.8 Other Units. . .

There are two other fundamental units of measurement that are required to quantify the
physical phenomena related to energy and electricity. These are temperature, and electric
charge. Temperature and thermal energy are, hopefully, familiar concepts. Electric charge
is required to quantify the physics of electric current, electric potential, and electrical resis-
tance. These units will be introduced, explained, and studied in chapters 4 and 6. We will
leave them until then.

0.1.9 The Importance of Units

To reiterate what was stated at the beginning of this section: a quantity without units has
no meaning. Including the units with a quantity gives it meaning, but also (as the preceding
subsections have shown) provide critical information about what conversion factors, if any,
need to included to interpret and use its value. Units determine how to interpret a quantity,
physically. Units determine how to use a quantity, numerically. The proper inclusion and
treatment of units will be strongly emphasized in this course.

0.2 Trigonometry

Trigonometry is the mathematics of triangles. It is expected that you have seen this in high
school. We will quickly review this here since it is the building-block for the description of
vectors (which are the subject of the next section in this chapter). We need to be able to
describe vectors quantitatively since forces (chapter 1) and torques (chapter 2) are vectors,
and those form the basis of Biomechanics.

While “trigonometry” is the proper name of this mathematical sub-discipline, we will
refer to it as “trig” from now on.
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0.2.1 Right-Angle Triangles

x

y

θ

A

OH

Of all the categories of triangle (like equilateral, isosceles, etc) the
most useful type is the right-angle triangle, where one of the angles is
90◦. The longest side, which is opposite the right-angle, is called the
hypotenuse. The angle θ that specifies the direction of the hypotenuse
is between the hypotenuse and what is called the adjacent side. The
remaining side is called the opposite.

In the context of the physics of two-dimensional systems we usually make our measure-
ments relative to a choice of Cartesian axes: the usual xy-axes. Placing the right-angle
triangle with the adjacent side along the x-axis and the hypotenuse starting at the origin
(as shown in the diagram) we measure the angle θ counter-clockwise from the +x-axis. The
length A of the adjacent side is the x-coordinate, and the length O of the opposite side is the
y-coordinate. The length H of the hypotenuse relates to the other two side by Pythagoras’
Theorem:

H =
√

A2 +O2 (46)

With the hypotenuse a fixed length the lengths of the other sides are determined by the
angle. The relation between the angle and the lengths of the sides are given by the trigono-
metric functions.

0.2.2 Trig Functions

When the length of the hypotenuse and the angle of a right-angled triangle are given, the
other two sides are determined. In the case of a fixed length of hypotenuse, the other two
sides are functions of the angle. The function that gives the side opposite the angle in the
sine, and the function that gives the side adjacent the angle is the cosine.

x

y

θ

A

O
H

The triangle.

x

y

θ

A

O
H

The circle specified by
the triangle.
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x

y

θ

SR

The point on the circle.
The angle is θ = S/R.

x

y

θ

S

x

y
R

The triangle specified by
the point on the circle.

In the diagrams on the top, if we start with a right-angle triangle, we can form a circle
with radius equal to the hypotenuse H. When this circle is centered on the corner of the
triangle that has the angle θ, then the point on the circle where the triangle touches has
coordinates x = A and y=O.

In the diagrams on the bottom is the reverse approach, where starting from a point
on the circle we can inscribe a right-angle triangle. This approach is important because
it provides a definition of angle. In this construction the hypotenuse of the triangle is the
radius. The point is located a distance S along the circumference from the x-axis. This
defines the angle θ = S/R in terms of the measured lengths of the radius R and the arc
length S.

The measurement of angle defined that way has units of radians. An angle that goes
all the way around the circle has value equal to the circumference (the length of the arc)
divided by the radius: θ = (2πR)

/
R = 2πrad. Any other angle that is less than the whole

circle will be a fraction of this quantity.

The more commonly used measure of angle is the degree. An angle that goes all the way
around the circle is defined to be exactly 360◦. Any other angle that is less than the whole
circle will be a fraction of this quantity. From their definitions the conversion factor between
these two units of angular measure is πrad = 180◦. In practice and in this course we will
measure angles related to geometry and vectors using degrees only. The only exception is
when describing rotational motion and torque (chapter 2) where we will need to express
angles in radians.

x

y

θ

S

x

yR

x = R cosθ
y= R sinθ

In a circle of radius R specifying an angle θ specifies an inscribed triangle. Consequently
the sides of that triangle (the adjacent x and opposite y sides) are each a function of the
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radius and the chosen angle. These functions are called the cosine and sine, and they
relate to the triangle in this way:

x = R cosθ (47)
y= R sinθ (48)

These two trigonometric functions are fundamental in the sense that they can not be ex-
pressed in terms of other functions we already know, like the square-root. While these
functions are defined in terms of angles measured in radians, our calculator will automat-
ically convert the angles we specify in degrees to angles in radians before computing the
function value. So we can talk about these trig functions in terms of angles in degrees.

Quadrants?

Initially the trig functions were defined using a triangle in the first quadrant with an angle
between 0◦ and 90◦. But that is only one of the four quadrants. What about for triangles
that are in one of the other quadrants? We need to have an answer to this since we will have
forces that point towards the left (into the second or third quadrants), or downwards (into
the third or fourth quadrants).

The trig functions work in all quadrants. All that is required is that you measure the
angle counter-clockwise from the +x-axis. Your calculator will give you the value of any of
the trig functions for any value of angle. It is up to you to know which triangle you are using
to the define the angle.

Domain of Trig Functions

The first, most important, property of the trig functions is that they are periodic: they
repeat. Specifically the value of sin(θ) and the value of sin(φ) are the same if θ and φ differ
by an integer multiple of 360◦.

Positive angles are measured counter-clockwise around the circle, and negative angles
are measured clockwise around the circle. Angles that are greater than +360◦ and less than
−360◦ would correspond to having gone around the circle more than once. Such values of
angle are necessary when describing angular or rotational motion. But for the geometry of
triangles in the plane we only go around the circles once, at most, and we will use angles in
the range |θ| < 360◦.

When solving geometric problems involving angles you can, because of the periodicity,
always write your angles as positive quantities measured counter-clockwise from the +x-
axis by adding an appropriate multiple of 360◦. But you calculator doesn’t care: the domain
of each of the trig functions is the entire real number line, and will calculate the correct
value for any value of angle.

the Sine

The sine of an angle is the ratio of the opposite over the hypotenuse (sinθ = O/H). For our
purposes in this course just think of it as the y-component of the triangle. As a function of
the angle, its graph is like this:
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θ

sinθ

−720◦ −540◦ −360◦ −180◦ 0◦ 180◦ 360◦ 540◦ 720◦

The function is zero at each and every multiple of 180◦, positive and negative, including
θ = 0◦. The maxima of this function are all sinθ =+1, and the minia are all sinθ =−1. The
maxima (and minima) of the function are exactly mid-way between its neighboring zeros of
the function. The zeros correspond to when the triangle has been flattened onto the x-axis.
The maxima are when the triangle has been flattened against the +y-axis. The minima are
when the triangle has been flattened against the −y-axis.

Note the spelling: “sine”. This sounds like the word “sign”, which would relate to whether
a number is positive or negative. But it has nothing to do with that. The name “sine” is just
a historical mistake (a mis-translation from the original Arabic) that we are stuck with.
There is no deeper meaning to the name.

the Cosine

The cosine of an angle is the ratio of the adjacent over the hypotenuse (cosθ = A/H). For our
purposes in this course just think of it as the x-component of the triangle. As a function of
the angle, its graph is like this:

θ

cosθ

−720◦ −540◦ −360◦ −180◦ 0◦ 180◦ 360◦ 540◦ 720◦

First notice that this function looks exactly like the sine function if it was shifted 90◦ to
the left. (It is!) The maxima are all cosθ =+1, and the minima are all cosθ =−1, and those
happen exactly half-way between two neighboring zeros. But now each of its zeros are at
−90◦ plus an integer multiple of 180◦. The “triangles” that correspond to these zeros are
like those in the case of the sine, but with the role of the x and y axes exchanged.

the Tangent

The tangent of an angle is defined to be the ratio of the opposite over the adjacent (tanθ =
O/A). Unlike the sine or cosine, where the denominator of the ratio was a positive constant
(the hypotenuse), the value of the adjacent varies. Most significantly, when the triangle is
collapsed onto the y-axis (for example when θ =+90◦ or θ =−90◦), the value of the adjacent
goes to zero, and the ratio O/A diverges to plus or minus infinity (±∞). This is its graph:

θ

tanθ

−720◦ −540◦ −360◦ −180◦ 0◦ 180◦ 360◦ 540◦ 720◦
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The tangent tanθ =O/A is of use in those cases when we do not have (or do not need) the
hypotenuse. If we have one side and the angle, the tangent lets us calculate the other side,
without needing the value of the hypotenuse.

From its definition we find that the tangent function relates to the sine and cosine:

tanθ = O
A

= (O/H)
(A/H)

= sinθ
cosθ

(49)

0.2.3 Inverse Trig Functions

The trigonometric functions go from the angle to the ratio of sides. But, in many cases,
we will have the sides of a triangle, but not the angle θ. In those cases, it is the inverse
trigonometric functions go from the ratio of sides to the angle. Mathematically

cosθ = A/H (50)

θ = cos−1(A/H) (51)

The cosine function is written “cos(·)”, while the inverse cosine is written “cos−1(·)”, or some-
times as “arccos(·)”.

When we use the inverse trig functions we must be cautious: one angle corresponds to
one triangle, but there are two triangles that have the same ratio of sides. Our calculator
will only give us one of the two possible answers. This is similar to when we use the square-
root function, where our calculator tells us “

p
4 = 2”, when there are two answers (

p
4 =+2

and
p

4=−2).

IMPORTANT : Your calculator is dumb

When you use any of the inverse trig functions on your calculator it will only be able to
give an answer in two of the four quadrants. It is critical that you know what quadrant
the answer should be in. The calculator will give you a number, but you will need to use
your brain to interpret what that means about the actual angle.

the Inverse Cosine

x

y

These two triangles have
the same cosθ = A/H

x

y

These two triangles have
the same cosθ = A/H

In each of the diagrams above there is a pair of triangles, both with the same size of
hypotenuse. Each in the pair is defined by an angle that is equal in magnitude, but opposite
in sign, to the other triangle in the pair. In these pairs of triangles the adjacent side is
common to both. For this reason the ratio A/H is the same for both triangles in the pair.
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When we use our calculator to find the inverse cosine for these pairs of triangles

θ = cos−1(A/H) (52)

they have the same ratio A/H. So how will our calculator know which of the two triangles
in the pair we are asking about? It can not. The argument “A/H” of the function is a single
number; it does not have information about the sign of A or H separately, but only their
ratio. For the angles shown in the diagrams above for the inverse cosine (and below for the
inverse sine and tangent) the value that your calculator will return is the one coloured in
blue. If you are trying to find the angle for the triangle coloured in green, then you will have
to use your brain to “convert” the answer into the correct quadrant. (Just like you would
have to choose “

p
4=−2”.)

the Inverse Sine

For the inverse sine our calculator will tell us the angle corresponding to a given ratio of
O/H. The diagram below shows the pairs of triangles that have equal values of O/H. Angles
noted by the blue wedge and the green wedge have the same size, but the angle for the green
triangle is given by the green arrow, measured from the +x-axis.

x

y

These two triangles have
the same sinθ =O/H

x

y

These two triangles have
the same sinθ =O/H

the Inverse Tangent

x

y

These two triangles have
the same tanθ =O/A

x

y

These two triangles have
the same tanθ =O/A

Example 0.4 : Quadrant?!

What is the angle between the positive x-axis and the line from the origin to the point
x =−4cm, y=−3cm?

When solving problems of trigonometry always draw the triangle. It is very tempting
to simply “jam numbers into your calculator”, but in the case of inverse trig functions
that approach will be wrong 50% of the time.
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x

y
From the text description of the problem, the point is in the
third quadrant. With the hypotenuse connecting the origin with
the point, and the adjacent side on the x-axis, the triangle is also
in the third quadrant. From this we see that the angle must be
in the range −180◦ < θ < −90◦ when measured clockwise from
the +x-axis. (If the angle is measured counter-clockwise, then
+180◦ < θ <+270◦. Both answers are equivalent.)

With the adjacent and opposite sides of the triangle specified the value of the tangent
function is their ratio: tanθ = O/A = (−3cm)

/
(−4cm) = +3/4 = +0.75. Our calculator

will tell us (rounding to the nearest integer) that tan−1(0.75) = 37◦; but that is in the
first quadrant, corresponding to a triangle whose adjacent and opposite sides are both
positive. To translate this result to a triangle in the third quadrant, with adjacent and
opposite sides both negative, we need to subtract (or add) 180◦. This gives

θ = 37◦−180◦ =−143◦ (53)

(or equivalently +216◦ by adding, if measure the angle counter-clockwise). The result
matches our expectation which was set by our drawing of the triangle.

0.2.4 Some basic geometry

When lines intersect the angles formed relate to each other. Below is an example of three
lines passing through a common point. Note how the angles opposite each other across the
point of intersection are equal.

52◦

52◦

65◦

65◦

63◦

63◦

Another common geometry that we will encounter is when we have a set of coordinate
axes that are rotated by a specific angle. In the diagram below note how the angles formed
between the standard (horizontal an vertical) axes and the rotated axes all relate to each
other.

Ch.0 Preparation 19 Text for PPT {α13} October 24, 2022



23◦

23◦

23◦

23◦

67◦
67◦

67◦ 67◦

90◦

90◦

This geometry occurs when we consider objects on an inclined surface. There are the axes
corresponding to horizontal and vertical, and there are axes that are parallel and perpen-
dicular to the surface, which is tilted.

63◦63◦

63◦63◦

117◦

117◦

117◦

117◦

parallel

parallel

In the case where a line crosses two parallel lines the angles formed relate as shown in the
diagram above. This is know as the “transverse-parallel theorem” (or the “Z-theorem”).

0.3 Vectors

Describing how something is moving can not be done with a single number. Consider trav-
eling in a car at 100 km/h. Traveling along the highway at that speed might be the start of a
fun trip. Traveling at that speed towards the ditch would . . . not be fun. The speed by itself
is not enough to specify movement, direction is also necessary. But movement is a single
concept, and the mathematical object that describes it is a vector.
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0.3.1 Vector ̸= Number

A vector is not a number. To understand what that means have a look at this familiar
triangle, below:

3

4
5

You know this:
5 ̸= 3+4 (54)

So how does the side of length 3 “add” to the side of length 4 to give the side of length 5?
You can see from the diagram that the direction of the sides are important. This point of
this? That a single number (the length) is not enough to specify a vector. A vector is not a
number.

A vector may not be a number but it can be described and quantified using numbers –
with an emphasis on there being more than one number required.

0.3.2 Vector Notation

When working with vectors there are three similar-looking symbols that have very different
meanings. At each step you must be very clear which you are actually working with:

C⃗ The letter gives the vector a name, and we read this as “the vector C”. Look very
closely at the symbol and notice the arrow above the symbol. It is that arrow that labels the
quantity as a vector. This is a vector and you have to remember that it is not a number.

Cx The letter “C” tells us that we are talking about something related to the vector
C⃗. This number is called a component of the vector. The sub-script “x” tells us that this
quantity is the x-component of the vector C⃗. This quantity is a number, and its sign (positive
or negative) is important. But the sign of Cx is not by itself the “direction” of the vector
C⃗. You need both components to determine the direction of the vector: You need the x-
component to specify how much the vector points to the right or to the left; and You need
the y-component to specify how much the vector points upwards or downwards.

C The letter C written without an arrow above, and without a sub-script below, is the
magnitude of the vector C⃗. The magnitude C is a non-negative number. It is the “length”
of the hypotenuse of the triangle formed by the vector and the xy-axes. It relates to the
components of the vector by Pythagoras’ Theorem:

C =
√

C2
x +C2

y (55)

In the context of forces, it is the answer to the question “how hard are we pushing?” The
magnitude does not have any information about the direction of the vector – have another
look at the 3-4-5 triangle in the previous sub-section to understand this.
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0.3.3 Vector Components

The usual description of a vector is a quantity “with magnitude and direction”. The mag-
nitude is a number (with units), and the “direction” is an angle (also a number) measured
from a specified axis. An alternative – and much more useful – way to describe a vector
using numbers is to specify its components. These two numbers answer “how much to the
left or right?” and “how much up or down?”

x

y

Fx

Fy
F⃗

θ

Constructing a right-angle triangle that has the vector
as its hypotenuse, the components are the adjacent side
(Fx) and the opposite side (Fy).

Fx = F cosθ (56)
Fy = F sinθ (57)

As long as you measure the angle θ counter-clockwise
from the +x-axis these two equations will give the cor-
rect sign for each component, regardless of what quad-
rant the vector points into.

In most cases you will not be given a diagram of the force, and you will be “using numbers
to find other numbers”. It is critical to recall how dumb your calculator is. (As we saw
in subsection 0.2.3 regarding the inverse trig functions.) Always draw, or qualitatively
sketch, the vector so that you know the quadrant. This is necessary to get the signs of the
components correct, and/or to get the angle into the correct quadrant. Always sketch the
vector.

Example 0.5 : Vector components

A force of magnitude 42.1 N is pushing downwards, 15◦ to the left of the vertical.
What are its components?

We always sketch the vector before calculating anything to help guide our process. It
will also provide an idea of what the answer will be so that we can check our result at
the end.

x

y

F⃗
15◦

255◦

From the diagram we see that both components will be negative (Fx < 0N and Fy < 0N)
since it points into the third quadrant, and that the y-component will be larger than
the x-component (|Fy| > |Fx|) since it is closer to the y-axis than the x-axis. We will use
this information to check our result at the end.

The angle we were give was measured from the −y-axis (at 3×90◦ = 270◦). To cal-
culate the components we need the angle measured counter-clockwise from the +x-axis.
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This is θ = 270◦−15◦ = 255◦ (the angle noted in blue in the diagram).

Fx = F cosθ = 42.1N cos255◦ =−10.9N (58)
Fy = F sinθ = 42.1 sin255◦ =−40.7N (59)

Checking with our qualitative result above we find that this agrees: both components
are negative, and the y-component is largest.

0.3.4 Adding Vectors

Experience and experiment teaches us that forces combine. When two people push on an
object its motion is affected as if there was a single force acting on it. That single effective
force is the sum of the applied forces.

Adding Two Vectors

The rule for summing (adding) two vectors is the parallelogram law:

A⃗
B⃗

C⃗ C⃗ = A⃗+ B⃗

This diagram is meant to show that the sum of the two vectors can be found by moving
along the direction of one vector, and then moving along the direction of the other vector.
The sum then points from when you started to the new place where you arrived. This also
shows how the order does not matter (A⃗+ B⃗ = B⃗+ A⃗) and that you get the same result from
adding in any order.

Since Ax measures the horizontal component of A⃗ and Bx measures the horizontal com-
ponent of B⃗, moving along A⃗ and then along B⃗ will move you horizontally an amount Ax+Bx,
and this must be Cx. For this reason the sum of vectors can be calculated using their com-
ponents like this:

Cx = Ax +Bx (60)
Cy = A y +By (61)

In cases where we add more than two vectors, the x-component of the result is the sum of
all the x-components, and the y-component of the result is the sum of all the y-components.

Adding More than Two Vectors

Example 0.6 : Adding vectors

Three forces in the xy-plane are being exerted on an object: A⃗ of magnitude 4.47 N
pointed 66◦ below the +x-axis; B⃗ with x-component −2.00 N at 30◦ to the left of the +y-

Ch.0 Preparation 23 Text for PPT {α13} October 24, 2022



axis; and C⃗ of magnitude 1.37 N at 45◦. What is the magnitude and direction of D⃗ the
sum of these forces? (There is no significance to any of the letters used to name these
forces.)

When presented with a problem of vectors the first thing you must do is sketch the
vectors. When finding the components of a vector from its magnitude and direction, the
sketch will give you information about what the signs of the components will be, as well
as their size relative to each other.

Stop! Sketch them now. My sketches will be below.

The sum of forces is
D⃗ = A⃗+ B⃗+ C⃗ (62)

In terms of the components, this means

Dx = Ax +Bx +Cx (63)
D y = A y +By +Cy (64)

To calculate these two equations we will first need the x and y components of the three
forces. The components of A⃗ and C⃗ are easy to find, since we are given a magnitude and
the direction for each.

The sketch of A⃗ is:

x

y

A⃗

−66◦

The sketch shows us to expect that A⃗ points into the fourth quadrant (Ax > 0N and
A y < 0N) and that |Ax| < |A y|. Calculating the components of A⃗ we find

Ax = 4.47N cos(−66◦)=+1.818N (65)
A y = 4.47N sin(−66◦)=−4.084N (66)

which matches our expectations. (If we respect significant figures, we would only keep
two decimal places – but we will wait until our final result before we apply rounding.)

The sketch of C⃗ is:

x

y

C⃗
45◦
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The sketch shows us to expect that C⃗ points into the first quadrant (Cx > 0N and Cy >
0N) and, because the angle is 45◦, that |Cx| = |Cy|. Calculating the components of C⃗ we
find

Cx = 1.37N cos(45◦)=+0.969N (67)
Cy = 1.37N sin(45◦)=+0.969N (68)

which matches our expectations.

The vector B⃗ is specified by a component (Bx = −2.00N) and a direction (30◦ to the
left of the +y-axis, which is 120◦ from the +x-axis). When we sketch it, we see that this
describes a triangle in the second quadrant.

x

y

−2N

By

B⃗
120◦

The sketch shows us to expect that B⃗ points into the second quadrant (since θ = 120◦,
so that Bx < 0N and By > 0N) and, because it is closer to the +y-axis than the −x-axis,
that |Bx| < |By|. Since tanθ = By

/
Bx we can use By = Bx tanθ to find its y-component.

Calculating the components of B⃗ we find

Bx =−2.00N (69)
By = Bx tanθ =−2.00N tan(120◦)=+3.464N (70)

which matches our expectations.

Before we calculate the sum of the vectors numerically, it is a good idea to sketch
the vectors to get a qualitative idea of what the result will be. (The different colours
of the vectors are just so we can distinguish them from each other, and have no other
significance.)

A⃗
B⃗ C⃗

D⃗

Since we have the numerical values of all the components of the vectors A⃗, B⃗ and C⃗,
we can calculate their sum:

Dx = Ax +Bx +Cx D y = A y +By +Cy (71)
= (+1.818N)+ (+0.969N)+ (−2.00N) = (−4.084N)+ (+0.969N)+ (+3.464N)

(72)

=+0.79N =+0.35N (73)
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The Zero Vector

When adding vectors, specifically forces, there is a special result that we will often require:
that the vectors cancel each other. If it is just two vectors, and one goes forwards, the other
comes back the same amount, and you are back where you started. If three vectors are being
added, then (graphically) their addition forms a triangle, where the start and finish are at
the same place.

IMPORTANT : The Zero Vector

A vector is not a number. But there is an important vector that looks like it is an
exception: the zero vector, 0⃗. This is the vector whose magnitude is zero. (Because of
this, the zero vector does not have a direction.) For historical reasons we are stuck with
writing the zero vector as 0⃗, even though it is not a number. One way to rationalize this
is to see that each component of this vector is zero.

Example 0.7 : Vectors that sum to zero

Three forces in the xy-plane are being exerted on an object: A⃗ of magnitude 4.47N
pointed 66◦ below the +x-axis; B⃗ with x-component −2.00N at 30◦ to the left of the +y-
axis; and C⃗ whose magnitude and direction are unknown. What is the unknown force
C⃗ if these three forces sum to zero?

The equation that defines the situation is

0⃗N= A⃗+ B⃗+ C⃗ (74)

When we write out the x and y components of this equation we will have two equations
for the two unknowns: Cx and Cy. Since the components are all numbers, the terms in
each of the equations will obey all the usual rules of algebra, and will have values we
can find with our calculator.

The forces A⃗ and B⃗ were already used in the previous example (0.3.4). Using what
we learned in that example we can qualitatively estimate what the force C⃗ must look
like. The forces A⃗ and B⃗ look like, and sum to this:

x

y

A⃗

−66◦
x

y
B⃗

120◦

B⃗ A⃗

sum

Both forces are roughly the same magnitude, but point in slightly different direc-
tions. The force B⃗ is 30◦ from the vertical axis, while the force A⃗ is only 24◦ from the
vertical axis. For the sum of all three forces to be zero the force C⃗ must be the opposite
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of A⃗+B⃗. Qualitatively, from the diagram we have drawn, we can see that C⃗ will be small
in comparison to the other two, and that will point slightly upwards. This result is not
the conclusion of the problem, but gives us an estimate against which we can check our
quantitatively calculated answer below.

The components of the forces A⃗ and B⃗ were already calculated in the previous ex-
ample (0.3.4):

Ax =+1.82N Bx =−2.00N (75)
A y =−4.08N By =+3.46N (76)

Using these values we find that the x and y components of the equation for the sum of
all three vectors are:

0N= Ax +Bx +Cx 0N= A y +By +Cy (77)
0N= (+1.82N)+ (−2.00N)+Cx 0N= (−4.08N)+ (+3.46N)+Cy (78)
Cx =+0.18N Cy =+0.62N (79)

As found qualitatively this vector is small in comparison to the other two, and points
mostly upwards (Cy > 0N and |Cy| > |Cx|).

0.4 Logarithms

In chapter 5 when we will be studying the energy carried by sound waves we will need to
use the logarithm function. You are supposed have seen this briefly in high school, but it’s
understandable if you don’t recall this topic. This section is meant as a review of (introduc-
tion to?) the logarithm function. This review will be most effective if you get your calculator
out and follow along with the examples. So get your calculator!

The idea of the logarithm is that it is the inverse of the exponential. To warm up to this
idea let’s review an inverse you know: the square-root.

0.4.1 Remember the Square-Root?

The square of a number is that number multiplied by itself: y= x2 = x×x. It is a mathemat-
ical fact that if you choose a non-negative number y, there is a number x such that y = x2.
Both of these operations are functions (they map each number onto another single number)
and each is the inverse of the other.

y= square of x y= x2 (80)
x = square root of y x =p

y (81)

When you have an equation involving a square, you can usually solve it using a square-
root. For example, if you are told that x2 = 16, you know that x = ±4. But if x2 = 3.7, you
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must calculuate x =±p3.7. That comes from applying the square-root to both sides:

x2 = 3.7 (82)√
x2 =

p
3.7 (83)

x =
p

3.7= 1.923 . . . (84)

The ± we add by hand since we know that there are two consistent solutions to the original
equation x2 = 3.7 ( (+1.923)2 = 3.7 and (−1.923)2 = 3.7 ) but our calculator gives only the
positive root. The relationships

p
x2 = x and (

p
x)2 = x are true since the square-root is the

inverse of the square.

0.4.2 Powers of Ten

The square of a number is that number multiplied by itself. Think of it this way: take
two copies of x and then multiply them together. The idea of an exponent is to take a spe-
cific number of copies (not just two) and then multiply them together. For example, if the
exponent is five, then

y= x5 = x× x× x× x× x (85)

In that example the number “5” is called the exponent and the quantity “x” is called the
base. As written y = x5 is a function that maps values of x onto y, and x is the independent
variable. What we are going to do next is look at cases when the base is a fixed number and
the exponent is the variable.

Ten raised to the power five is

105 = 10×10×10×10×10= 100000 (86)

In general, ten raised to an positive integer n is a one followed by n zeros; the exponent tells
us how many times the decimal place has been “moved over” towards the right.

Algebraic rules of exponents:

10a ×10b = 10(a+b) (87)(
10a)b = 10(a×b) (88)

There is an important variant of the first property, found when we take a ratio of two expo-
nentials:

10a

10b = 10(a−b) (89)

▲FIX: To be written. The exponent zero. Negative exponents. Non-integer exponents.
Graph of log(x). Comment on steepness.

0.4.3 The Logarithm

With the idea of the function y= 10x comes the idea of its inverse:

y= 10 to the power x y= 10x (90)

x = logarithm of y x = log(y) (91)
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Your calculator may have two different logarithm buttons on it. One will be labeled LOG, and
that’s the one that we want. (If there is another one, it might be labeled LN. Don’t use the
LN function!)

Graph of 10x. Graph of log(x). Comment on their steepness, and their asymptotes.

x

10x

x

log(x)

You know that if you square ten you will get one hundred. You know that if you take
the square-root of one hundred you will get ten. The logarithm is the function that tells you
that two is the power of ten that equals one hundred.

102 = 100 (92)
2= log(100) (93)

This pattern is true for any exponent. For example, when the exponent is seven:

107 = 10000000 (94)
7= log(10000000) (95)

And when the exponent is negative three:

10−3 = 1/1000= 0.001 (96)
−3= log(1/1000) (97)

Essentially the logarithm tells you where the leading digit is relative to the decimal place.
Notice also that there is no value of x for which 10x will be less than zero. For this reason
the logarithm is not defined for negative arguments (just like how

p−1 is not defined).

Now, try these in your calculator:

105.81 = 645654.229 . . . (98)
5.81= log(645654.229 . . .) (99)

Note that the number 645654.229 is between 100000 = 105 and 1000000 = 106, so its loga-
rithm is between 5 and 6. As with the square-root the exponential (base-10) and the loga-
rithm are defined for non-integer values. Just remember that, since 10x > 0 for any value of
x, the logarithm log(y) is only defined for y> 0.

When you have an equation involving a square, you can usually solve it using a square-
root. Similarly if you have an equation involving the unknown as the exponent of 10, you
can usually solve it using the logarithm. For example, if 3.7 = 10x, then x = log(3.7) since
the exponential base-10 (the function 10x) and the logarithm are inverses of each other.
Similar to the relation between the square and the square-root, the relations log(10x) = x
and 10log(x) = x are true between the exponential and the logarithm. These relationships
will be explored in the Exercises.
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0.5 Mathematical Symbols

Another title for this section might be “what’s with all these weird letters?”

0.5.1 The Utility of Symbols

One way to characterize physics is to say that it studies the quantitative relationships be-
tween measurable quantities. An example relationship would be “the sum of forces acting on
an object equals its mass times its acceleration”. This expression can, of course, be refined
and nuanced with further words to clarify, sharpen and deepen its meaning and utility.

But if you have gathered data and need to use this relationship to calculate predictions,
you don’t want to have to spend your time writing out this long sentence over and over. It’s
much faster fast to write “

∑
F⃗ = ma⃗”.

If we need to document or communicate our calculations and results through writing,
then we can choose a form of writing that suits our purpose.

0.5.2 The Range of Symbols

If we limit ourselves to letters from the beginning of the word that names a quantity then
we run into a problem: there are multiple quantities and concepts that begin with the same
letter. In some cases it is a problem we are stuck with, and can not change, because the
choice of letter has been fixed by historical convention. For example:

• The upright letter “m” is the symbol for the base unit of distance, the metre, as well
as the prefix “milli” (10−3), while the upper-case “M” is the prefix “mega” (10+6). But
the italicized letter “m” or “M” is conventionally used to denote the mass of an object.

• T⃗ is the force of tension exerted by a rope (sub-section ??), T is the thermodynamic
temperature (section 4.2), and T is the time between repetitions of oscillation (sec-
tion 5.4).

• In chapter 4 we will talk about how K is the kinetic energy of an object, kelvin K is the
unit of temperature, and K is the thermal conductivity of a material. In section 3.3
we will remind ourselves of how k is the spring constant of an object defined through
Hooke’s Law.

• The symbol “C◦” is the unit of temperature for the Celsius scale, while “C” the coulomb
is the unit of electric charge. The symbol “C ” denotes heat capacity (each type of
material has its own value of this physical property), while “c” denotes the speed of
light in vacuum (which has the exact value 299792458m/s).

▲FIX: To be written.

The Latin alphabet “ABC. . . ” and “abc. . . ”. Reserved symbols and conventional uses
(like “F” for “force”, and “x” for the horizontal axis). Running out of symbols.

The Greek alphabet “αβγδϵ. . . ”. You already know one of them: “θ” which is traditionally
used to denote an angle.
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0.5.3 Common Greek Symbols

There are only twenty-six letters in the English alphabet – far too few for enormous number
of objective quantities that are ruled by physical laws.

The Greek letter theta “θ” which is traditionally used to denote an angle.

The summation
∑

is the upper-case version of the Greek letter sigma.

Torque (the topic of chapter 2), which is the rotational counterpart of force, is symbolized
by “τ” the Greek letter tau.

Noting a difference or change ∆ is the upper-case version of the Greek letter delta.

In chapter 3, when we study the properties of materials, we will use the Greek letters
sigma σ and epsilon ϵ.

In chapter 5, when we study waves, we will use the Greek letter lambda λ.
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Chapter 1

Forces

For us, a force is a push or a pull. In the context of the Physiotherapy Technology program
the forces we need to think about are those exerted by or exerted on the human body. As
a result of those pushes and pulls there will be forces generated inside the body, between
the muscles, tendons, ligaments, cartilage and bones. Being able to think objectively about
these concepts will form the foundation for your Biomechanics and Physiology courses.

1.1 What is a Force?

A technically precise definition of a force would be “an interaction that could change an
object’s motion”. For us, to say that a force is a push or a pull will be a good start. In this
chapter we will now try to refine that idea, and be more rigorous in how we think about
forces. Conceptually we will need to be careful and precise in how we speak about forces.
Physically we need to see a force as an interaction that could change an object’s motion.
Quantitatively we need to be able to work with forces as vectors.

1.1.1 “The Object”

When speaking of forces we must be clear to identify what the force is affecting. There will
always be that which acts, and that which is acted upon. The action itself is the force. Here
are some examples:

“Gravity pulls down on the apple.”

“The racket hits the tennis ball.”

“The woman pushes the battery into its socket.”

“The child is dragging their toy across the lawn.”

In all those examples the sentence are structured as “A acts on B”. The thing “A” is the cause
of the force and “B”, the thing that feels the force, is the object. When speaking of, thinking
about, or analyzing the effect of force it is critical to identify the object. This is so important
that it will be considered Step 0.
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Pictured is a person pressing down on a scale (a device with a spring inside whose defor-
mation measures the weight on it). Which way is “the force”? The answer depends upon the
choice of object. If the object is the scale, then the force acting on the scale is downwards. If
the object is the person, then the force acting on the person is upwards. These two forces are
related (by Newton’s 3rd Law of “action and reaction”), but they are separate forces acting
on separate objects. If we need to talk about a force we must specify what it is acting upon.

1.1.2 Thinking about Interactions

There are some important words to notice when speaking of forces. If we’re pushing or
pulling on an object, and the cause of the interaction is the subject of the sentence, then we
say that we are applying a force to the object. We may also say that we are exerting a force
on the object. Using the word “exert” is intended to make you think about the related effort,
to help place your imagination in the context with you being the cause of the interaction.
(The idea of effort returns in chapter 4 when we study energy.) When talking about forces
always make an effort to be aware of what two things are interacting, and which one is the
object on which the force is acting. How we speak models how we think. And being mindful
of how we speak can change how we think.

Gravity is the interaction between the Earth and the masses of objects that are near
it, relative to the size of the Earth. In this course the context will always be on or near
the surface of the Earth. Therefore gravity will always be present in the context of this
course. For an object near the Earth the force of gravity will be downwards, and will have a
magnitude equal to the object’s mass times g = 9.81 N/kg. All exercises and problems that
investigate the effect of the sum of all forces acting on an object will include gravity.

Do not be afraid to draw pictures of what is happening. If it helps, try building a little
model of what is happening. Forces (and later in the course, Torques) are all about how
things relate to each other geometrically. Use any method that works for you to help yourself
understand the geometry of the situation.

1.1.3 Forces are Vectors

When we push on an object there are three elements: where on the object we are pushing,
how hard we are pushing, and the direction we are pushing.

The importance and consequence of where on the object we are pushing is the subject of
chapter 2. We will leave this for now.

How hard we are pushing is quantity we would measure in newtons. The direction we
are pushing is the angle we would measure in degrees relative to a reference direction. For
this reason, force itself, as a thing, is not a single number. To quantitatively describe a force
we need at least two numbers: the magnitude and the direction. This categorizes force as a
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vector. (This means that, alternatively, we could also quantitatively describe a force using
its components.)

Facts like where on the object we are pushing and the direction we are pushing are
geometric in their nature. Vectors we draw as arrows, and force is a vector quantity. Because
of this it is reasonable to ask: How can we draw “a force acting on an object”?

1.1.4 How to Draw a Force?

Do me a favour: do a web search for the painting by the French surrealist Magritte with
the words “ceci n’est pas une pipe”. The painting, titled “La Trahison des images”, is both a
joke and a serious statement. The joke is that a painting of a thing is not the thing itself,
obviously. The serious part is that we should be careful to not think that a representation
of something is the same as the thing itself.

I bring in this abstract philosophical point to focus us on an important question: If we
are going to draw a force, then what do we want or need that representation to convey?
Think about the goal. Interaction is determined by geometry, and thinking about geometry
is always aided by drawing it. Being able to include forces in our drawings will help us
reason about them. The properties of force that are important were listed in the previous
sub-section: where on the object we are pushing, how hard we are pushing, and the direction
we are pushing.

In general when we draw it is with a collection of lines of certain lengths and directions
on the page. We will make a representation of a force by drawing a specific collection of
lines: an arrow.

We begin with a line. The direction of the line is to be parallel to the force. The length of
the line will be, in some way, proportional to the magnitude of the force. To distinguish the
direction of a force we decorate one end of the line with an “arrow head”. The direction of
the force is from the un-decorated end towards the arrow-head end.

ceci n’est pas une force

It may not be “a thousand words”, but I can draw three or four arrows much, much
faster than I can type the sentences that would convey the same information about the
forces acting on my body as I sit typing these words.

If we have drawn a picture of the object we can place the arrow of the force on the object
to indicate where on the object it is acting. Although there is one unresolved question: Do
we place the tip or the tail at the position on the object where the force is acting?

Ch.1 Forces 34 Text for PPT {α13} October 24, 2022



A Push A Pull

In an idealized situation it is acceptable to think that pushing towards the right will
achieve the same effect as pulling towards the right. However, in reality you know that
someone pulling on your right arm is different from someone pushing on your left shoulder.
In this text I will choose to draw force with the arrow head tip touching the object if it is a
force that is pushing on the object. If the force is, instead, pulling I will draw it with its tail
on the object with the arrow head pointed away.

There is no real significance to the colour used to draw the forces. In this text I will
usually use red to draw force vectors. If there are multiple forces, and I need to draw them
very close to each other, or even overlapping, I may use shades of orange, red and brown,
so that we can visually distinguish between the different forces. There is no significance to
these colour schemes; it’s just for clarity.

1.2 The Types of Forces

There are two categories of force.

The first category of forces are those exerted when two objects touch each other. A book
resting on a table, or ladder leaning against a wall, experience these kinds of forces. There
are also forces exerted between the pieces of an object itself because of how they are con-
nected to each other. The fibers inside a rope that is being pulled, or the parts of a door as
you push it closed, experience these kinds of forces. All of these belong to the category of
contact forces.

As you might have guessed, the other category are non-contact forces. Gravity is the
ever-present example of this type of force. You do not have to touch the Earth to feel the
effect of gravity. In fact I would argue that when are not touching the Earth is when you
become most aware of gravity! This fact is part of your foundation of how you think about
the world, and you are always aware of it, even if not intellectually or consciously. In what
follows we will try to become more rigorous in our thinking about gravity.

Later in the course (chapter 6) we will study the effects of another non-contact force:
Electrical force. Electrical forces are present all about us, but we are almost never aware of
them. Their indirect effects, through lighting, appliances, and computers, form the basis of
our day-to-day lives. But direct electrical forces are almost never seen. The reason why will
be uncovered in chapter 6.

1.2.1 Contact

When two objects touch it is their surfaces that contact. While this may be thought of as a
single interaction, it is more correct (and productive) to recognize that there are two things
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happening between surfaces in contact: They do not move through each other, perpendicular
to the surface of contact; and They resist moving against each other, parallel to the surface
of contact. For this reason we model this single interaction with two separate forces: the
normal, which models the part which stops the objects from passing through each other;
and friction, which models the part which resists the objects sliding across each other.

The Normal: n⃗

The portion of the interaction that opposes the object moving through the surface is called
the normal, given the symbol n⃗. The cause of this force is the physical fact that two pieces
of matter can not occupy the same space.

The direction of this force points away from the surface that the object is touching, per-
pendicular to the surface: in the mathematical terminology, it is normal to the surface.
(The angle between the normal force vector n⃗ and the surface is 90◦.) If the surface is not
horizontal, the normal can not be vertically upwards and can not be sufficient to opposite
gravity.

The one thing that you must remember:

the normal is not “mg”.

The normal is not the opposite of gravity. The normal is the part of the force of contact
that stops the object from going through the surface. I stress this point because, in my
experience, the false idea of “n = mg” is usually all that students recall of the normal force
from their high school science courses.

n⃗

When the surface of contact is
not horizontal the normal can not
be the opposite of gravity. When
friction is small, or absent, the
normal and gravity can not sum
to zero. This is why things may
slide down an incline.

n⃗ Even when the surface of contact
is upside-down and gravity points
away from the surface, if the sum
of all other forces is pressing the ob-
ject into the surface, then the nor-
mal will still point away from the
surface.

For an object touching the surface the normal is a response that depends upon all other
interactions experienced by the object. If the object is interacting with only the Earth and
the surface, then the normal will oppose the component of the gravitational force that is
trying to move the object through the surface. But if there is also a push or pull, then the
normal will oppose the sum of all the components of both gravity and the other forces that
are trying to move the object through the surface. In all cases the magnitude of the normal
acting on the object must be treated as an unknown that must be solved for.

Each piece of the surface that con-
tacts the object exerts a force on the
object. These small contributions
are distributed across the the area
of contact. n⃗

The distribution of forces across the
surface of contact can be modeled
by a single force acting at one loca-
tion. Later, when we study torque,
we will see how to determine this lo-
cation.

In this chapter, for the purposes of finding the sum of forces acting on an object, we can
treat the normal as if it were a single force acting at a single location on the surface of
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contact. In reality the forces of contact are distributed across the surface. A distribution of
force across an area is measured as pressure, which we will discuss in subsection 1.2.2. A
distribution of forces can be modeled by a single force acting at a single location. This single
effective force will equal the sum of all the little contributions that are distributed across
the surface. In chapter 2, when we study torque, we will be able to find and use the location
of this single effective force. In this chapter it will be sufficient for us to model the normal
as a single force, a push of unknown magnitude, that points perpendicular to the surface.

Friction: f⃗

Friction is the portion of the surface-surface interaction that is parallel to the surface, given
the symbol f⃗ . (The angle between the friction force vector f⃗ and the surface is 0◦.) As the
normal opposes the motion of one surface through another, friction opposes the motion of
one surface across another.

Friction is due to two main factors: the roughness of the two surfaces; and the fact that
two materials, when in contact, can react chemically to form bonds.

The magnitude of friction is variable. For example, if an object is at rest on a level surface
with no other forces acting on it, then the friction required to prevent it from beginning to
move is zero. Thus the magnitude of the frictional force is zero. But it you push very lightly
on the same object, then friction will grow in magnitude to cancel the applied force and keep
the object at rest. (Think how a table does not begin sliding across a room just because you
touch it.)

It is productive to think of friction as a question. The force of friction can be found
by asking “imagine if there was no friction, which way would the object move across the
surface?” The answer tells then tells us that, when there is friction, it will oppose that
imagined motion by pointing the direction opposite. Friction points in the direction parallel
to the surface that is required to oppose the motion that would happen if there were no
friction. This is important enough that we will repeat it:

Important : Friction is a Question

The force of friction can be found by asking “imagine if there was no friction, which way
would the object move across the surface?” The answer tells then tells us that, when
there is friction, it will oppose that imagined motion by pointing the direction opposite.

In this chapter we will exclusively be considering systems and objects that are not mov-
ing and that do not start moving. The friction present between surfaces that are not moving
relative to each other is called static friction. If the surfaces begin moving across each
other, or are already moving, the type of friction is called kinetic friction. While these two
types of friction are related to each other, they are actually physically distinct. In chapter 4
we will study kinetic friction briefly. In this chapter and in chapter 2 we study static friction
exclusively. (The transition from static friction to kinetic friction is complicated, and we will
not study it in detail in this course.)

In some circumstances friction will be so small that we can completely neglect it. For
example, in the human body the friction between the cartilaginous surfaces in a healthy
joint is practically zero. It is not exactly zero, but it is so very small in comparison to the
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other forces acting in and on the body that not including it in our analysis does not effect our
results. So read the context carefully: unless you are explicitly informed that the friction
can be neglected, you should assume that there is friction present.

The relation between the normal and friction

It will be important to remember that even if the friction is zero between two surfaces in
contact, the normal must still be there. There might be little resistance to the surfaces
moving across each other, but that does not permit them to move through each other. The
normal will still oppose that.

However the converse is not true. If the normal is zero, then the friction must be zero!
The only way that the normal between two objects can be zero is if the object are not touch-
ing. If they are not touching, there can be no friction.

In general friction is controlled by the roughness of the two surfaces in contact and their
chemical composition. But, experimentally, it is found that there is one other variable the
controls the “strength” of the frictional force: the magnitude of the normal force.

Experimentally it is found that if two surfaces are pressed together the friction between
them is increased by increasing the magnitude of the normal.

1.2.2 Pressure

In diagrams forces are usually drawn as arrows: lines that touch the object at a single
point. In reality, with contact forces this is never the case. When two objects touch there
is a shared area of contact on their surfaces. The force of contact is distributed across this
area. Pressure is defined as the measure of how a force is distributed across a surface:

pressure= force
area

(1.1)

The units of pressure are the pascal: 1Pa = 1N/m2. In chapter 3 we will study effects of
pressure on solid materials. (We will also see how the idea of pressure can be generalized to
cases where the force acting is not just pushing.)

In the simplest case of a uniform pressure exerted on a flat surface, the magnitude of the
net force exerted by the pressure is

force= pressure×area (1.2)

Gasses and Liquids

Pressure is defined as the measure of how a force is distributed across a surface. For solid
objects this measure is at the shared area of contact. But in the case of fluids and gasses (like
air and water) the pressure that happens at the boundary of the substance (like the inner
surface of a container, or the walls of a pool) is due to the motion of the molecules which are
bouncing off the boundary. It is the accumulation of these molecular rebounds that exerts
a pressure. The pressure at the boundary is thus due to the motion of the molecules in the
volume.
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▲FIX: To be written: At the bottom of a pool, or the bottom of the atmosphere; sup-
porting the weight of the fluid above. Directionless! Remove a half-space, and get the force
exerted perpendicular to that surface.

The role of Pressure in sound waves in chapter 5.

Buoyancy

Carving out a piece of the fluid. The pressure at the surface of the carved-out volume. How
the sum of all the forces acting at that surface support the volume of fluid. That is the
buoyant force.

Replace that volume of fluid with an object. We say that the object has displaced the
fluid. If there is a difference between the weight of the object and the weight of the fluid
that was displaced, then the buoyant force acting at the surface of the object and the force
of gravity acting on the object do not sum to zero.

▲FIX: Diagrams

1.2.3 Tension: T⃗

You know that you can’t push with a string, only pull. If you try pushing a string it simply
collapses and crumples, and the force you exert at your end is not transmitted to the other
end. In contrast if you pull on a string

Tension in a rope (or string, or cable, or chain, etcetera). The force that each piece must
exert on its neighbor to remain connected together.

The “tension in the rope” versus the force that the rope exerts on the object attached at
its end.

You can’t push with a rope (it buckles). The way in which tension can be redirected by
pulleys (below, and later in the examples).

Springs and Elastic Objects

The way in which forces can deform solid objects. Springs and deformable surfaces (example:
mattress). The force exerted on the object to cause its deformation versus the (reaction) force
that it exerts back. Careful!

Muscles

Here’s an interesting fact: muscles can’t push. Levers and torque (the subject of chapter 2).

Pulleys

▲FIX: HERE: Changing the direction, but not the magnitude, of the tension in a rope,
string, cable, or chain.

The idea of a pulley is a machine that changes the direction of tension in a rope without
changing its magnitude. Usually a pulley is a circular piece of material with a groove around
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its circumference. The pulley is kept in position, but allowed to turn freely, by an axle
through its center. The string or rope (or chain) is kept on the circumference of the pulley
by the edges of the groove.

■PICTURE: Pulleys:

[[diagram: pulley with rope wrapped over it]]

[[diagram: cross-section of previous]]

In the human body there are a few portions of anatomy that function as pulleys do,
redirecting forces. The patella (the kneecap) redirects the forces of the quadriceps (thigh
muscles) over the knee to pull on the tibia (the major bone of the lower leg). The tendons
through the wrist redirect the forces of the muscle groups in the forearm to the fingers. In
none of these are there a circular disk, but the description of a redirected force is common
with the mechanical pulley.

In the examples in sub-section 1.5.3 we will examine systems of more than one pulley,
and sometimes with multiple ropes. In such cases we have to consider each pulley itself as
an object in order to determine the tensions in the rope, or ropes.

1.2.4 Gravity: F⃗G

Every atom in the universe is attracted to every other atom in the universe by gravity. The
property of matter that causes this attraction is mass. These forces are weaker between
atoms that are further away. The force that the planet Jupiter exerts on you is not exactly
zero, but that planet is so very far away, that force is so much smaller than any force that
you could feel or measure that you can think of it as being zero. There is even a gravitational
attraction between you and your cellphone! But even you breathing on it exerts a repulsive
force billions of billions of times stronger than that gravitational attraction. In your life the
only gravitational interaction that matters will be with the planet Earth.

The Earth attracts without touching. As I said earlier in this chapter, when you are
not touching the Earth is when you become most aware of gravity! This is because the
space surrounding the Earth is changed by the presence of the Earth. The words “the space
surrounding the Earth” do not just mean “outer space”, beyond the atmosphere. “The space
surrounding the Earth” means all positions outside the material of the planet including
positions in the atmosphere, near the surface. This property of space itself is called the
gravitational field.

“Earth”

The gravitational field surrounding the Earth.

This property has, at each point in space, a magnitude and direction: it is a vector. The
symbol for the gravitational field is g⃗. Near the surface of the Earth the magnitude of the
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gravitational field vectors is

g = 9.81N/kg (1.3)

Three important things to note about this quantity:

• This is the magnitude of gravity’s strength, and is a positive number;
• In your calculations treat this as an exact number, not a number with only three

significant figures1; and
• You may or may not have seen the units of g written this way before (N/kg), but know

that it is equivalent to m/s2.

Gravity is an attractive interaction between masses. The Law that determines the grav-
itational force acting on an object is

F⃗G = m g⃗ (1.4)

where g⃗ is the gravitational field at the object’s location. The magnitude (mg) of this force
is called the weight of the object. The mass of an object (measured in kilograms of mass)
and the weight of an object (measured in newtons of force) are proportional to each other,
but are not equal since they measure separate physical properties.

the Center of Mass

Similar to pressure, we can model the affect of gravity (which is distributed across every
piece of the object) as a single force acting at one point in the object. The location of this
point is called the center of mass of the object. How to draw gravity acting on an object.

As long as the shape of the object remains constant over time, the position of this force
in the object will also remain constant. For uniformly dense objects with simple shapes
(like spheres, cylinders, and rectangular solids), the center of mass is at the obvious place:
the geometric center of the shape. Determining the location of an object’s center of mass is
something we will be able to do after we have studied balance in chapter 2.

Mass versus Weight

The weight of an object is defined to be the amount of force required to hold it up against
gravity. When gravity is the only force being opposed, weight and mass are proportional
to each other, and that proportionality is a constant: w = mg. For this reason in day-to-
day, non-scientific contexts a person’s mass is usually referred to as their “weight”, and
“weighing” someone is to measure their mass.

This is technically incorrect, but everyone understands it by the context. There are,
however, some contexts where this correspondence between weight and mass fails.

The one common-place context where weight is reduced is when an object is placed in
water. When immersed in water a portion of the force of gravity is countered by the buoyant
forces exerted by the pressure of the surrounding fluid. If we call the mass of the object mo
and the mass of the displaced fluid mf, then the object’s weight is

w = (mo −mf) g (1.5)

1The exact value adopted by the Bureau International des Poids et Mesures (BIPM) is 980.665 cm/s2 (see
https://www1.bipm.org/fr/CGPM/db/3/2/). We will use this value rounded to three digits.
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This is the vertical component of the force required to keep the object sinking (or rising) in
the fluid.

In this case, when the mass of the object is greater than the mass of the displaced water,
the force of gravity and the net force due to the pressure acting at the surface of the object
sum to a force pointing downwards, and the object sinks. If the mass of the object is less
than that of the displaced water, then the “weight” (as defined above) becomes negative. This
indicates that the net force due to the pressure (which points upwards) is larger than gravity
acting (downwards) on the object, and the sum of forces acting on the object is upwards,
causing the object to rise.

When the object is completely below the surface of the water, the volume of the displaced
water is equal to the volume of the object. Expressed in terms of the volume V of the object,
and the densities (kg/m3) of the object ρo and fluid ρf, the weight is

w = (ρoV −ρfV ) g (1.6)

An astronaut on the Moon has the same mass they had as on Earth, but their weight is
less since gravity is not as strong on the Moon. The same would be true of an astronaut on
Mars.2

Free-fall. Orbit. Physiological changes.

1.3 Equilibrium

Isaac Newton’s name is remembered because of his enormous contributions to a variety of
sciences: optics, astronomy, calculus, gravity, to name a few. But his most impactful contri-
bution to the physical sciences were his Laws of Motion. In our Age these Laws underlie
the engineering of every object and device, from skateboards to airplanes, from metro trains
to bottle-tops, and from submarines to satellites. These Laws apply in all systems and to
matter in all its forms. In the context of this course we will be studying how these Laws
apply to the human body.

I will be presenting Newton’s Laws in the reverse order. I am doing this deliberately
because it will help emphasize the aspects of each Law that are of importance to us in this
course.

1.3.1 Newton’s 3rd Law

The common-knowledge version of Newton’s 3rd Law is “Every action has an equal but
opposite reaction.” This Law embodies the idea of interaction.

A force is exerted by some thing onto some other thing; a force is the affect of one on
another. A force can not be acting if there is no cause, and a force has no meaning if it is
not acting on something. A force is how an interaction between two things affects one of the
things. When speaking of forces it is critical to be clear about which thing is the object.

2It may seem nonsensical to want to discuss gravity on the Moon or on Mars. But note that several na-
tions have are currently working towards returning to the Moon and establishing bases there. This will very
probably happen in your lifetime.
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The goal of this course is to prepare us to be able to think about the human body phys-
ically. When we are developing our description of a system in terms of the forces acting
Newton’s 3rd Law will often be a crucial tool. Focusing upon the nature of the interaction
will, quite often, help us see what the force is and in which direction it is acting. An example
that will help us see this is a person pushing a chair.

Object is Chair Object is Person

Get a chair on wheels and push it away from you. If you are doing this as you would
naturally, the chair moves, and you do not. Repeat this, but push the chair using your
littlest finger. As you push the chair focus on the fact that your little finger is bending. You
are now aware of the fact that the chair is exerting a force on you. The force that the chair is
exerting on you is equal in magnitude to the force that you are exerting on it. The force that
the chair is exerting on you is along the direction opposite to the force that you are exerting
on it. The mathematical statement of this, which you may have seen before, is

F⃗A on B =−F⃗B on A (1.7)

Experiment : Action & Reaction

Stop reading. Pause here and do the little experiment above. Do not read further
until you have understood this idea. If it does not make sense, then take notes on any
questions that thinking about this raises for you. Bring these questions to class!

The “equal and opposite force” does not mean that the motions of the two interacting
objects are also equal and opposite. This is because the motion of an object is determined
not by this one force, but by the sum of all the forces acting on that object. You exert a force
on the chair and the rolling resistance is very small, so the chair begins to roll away. The
chair exerts a force on you but the friction between you and the floor is large, so you do not
move. If you ask “what is the force?” the answer will depend upon which thing is the object.
This is why we must “identify the object”.

1.3.2 Newton’s 2nd Law

This is the one you’ll remember from high school:
∑

F⃗ = ma⃗. The technical reading of this
law is “the acceleration of an object, times its mass, equals the sum of the forces acting on
the object”. If this were a course in the science program, we would be spending most of
the semester focused upon using and understanding this relation between force and mass
and motion. You probably saw the application of this law in high school in the contexts of

Ch.1 Forces 43 Text for PPT {α13} October 24, 2022



“pushing a box” or “projectile motion”. But situations of that type are not of any interest to
us in this course.

You may return to thinking about human locomotion in your later courses, like Kinese-
ology and the Management courses. In this course we will not spend any time with using
this specific Law. Besides, in the clinical setting the patient will most likely remain on the
treatment bed, and not be flying across the room like a projectile.

Our only interest in the 2nd Law is how it relates to the 1st Law.

1.3.3 Newton’s 1st Law

If the sum of forces acting on an object is zero Newton’s 2nd Law does not say that the object’s
speed will be zero. It says that the acceleration is zero. It says that neither the object’s speed
nor direction of motion will change. If it is moving, then it will continue moing, and the way
in which it is moving will not be changing. But, if it is not already moving, then it will not
start moving. If the sum of forces acting on an object at rest is zero, then it will not start
moving.

Newton’s 1st Law states that if acceleration is zero, then the sum of forces is zero. It also
states that if the sum of forces is zero, then the acceleration is zero.∑

F⃗ = 0⃗ N ⇐⇒ a⃗ = 0⃗ m/s2 (1.8)

This Law may seem like a redundancy, since it looks like it is only a sub-case of Newton’s
2nd law, but it is a technical necessity: it says that only forces are the cause of acceleration.

For us, Newton’s 1st Law applied to objects that remain at rest is the only part that is
important for this course. If the sum of forces acting on an object is zero, then the object’s
motion will not change; if it is at rest, it will remain at rest.

1.3.4 An Object in Static Equilibrium

If the sum of forces acting on an object is zero, then it is said to be in equilibrium. If it
is moving, then its velocity (speed and direction) will not be changing. A case of constant
velocity is called dynamic equilibrium. If it is at rest (not moving), then it will remain at
rest, and the object is said to be in static equilibrium.

The human body is dynamic. But the ability to maintain static poses (standing, sitting,
or holding things) is an important facility. In this text, to gain a basis in the physics behind
Biomechanics, we will focus on cases of the body in static equilibrium. (The subject of the
motion of the human body will be part of chapter 4, in which we study Energy.)

In the cases that we study our goal will be to think physically about what happens inside
the body in response to the forces that are either exerted by the body or exerted on the body.
Since our context will be static equilibrium, we will be using Newton’s 1st Law to analyze
the systems we study.

1.3.5 Determining an Unknown Force

If we know a few, but not all, of the forces acting on an object, can we determine the other
forces acting on the object? If we are given that the object remains in static equilibrium,
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then Newton’s 1st Law gives a mathematical relation between all the forces: they must sum
to zero. This will be a set of equations: one equation for each component. If we have as many
equations as we have unknowns, then we are mathematically guaranteed that as solution
will exist. All we will need to do is apply a little algebra to isolate the unknowns, and then
use our calculator to determine their values.

The examples at the end of this chapter show this process in detail.

1.4 The Process

When you lift something, it is meaningful to ask “what is the tension in my biceps?” The
question will have an objective, quantitative answer. The purpose of this chapter to begin
developing a method for finding answers to questions like that.

It is fair to say that “the language of Physics is Mathematics”. But that is only true
if you wish to work with and obtain quantitative values. Thinking physically is reasoning
conceptually and qualitatively about how things relate to each other through their positions
and interactions. It is only after those relationships have been determined that the correct
mathematical descriptions can be selected and used. Those steps where you are reasoning
conceptually and qualitatively are where you are doing physics.

If you are going to ask questions like “what is the tension in my biceps?”, then you must
follow this process to get the answer:

The Process

0. Identify the Object!

1. Identify the forces acting on the Object.

2. Draw the Free-Body Diagram.

3. Separately, for each force acting on the Object:

• draw the coordinates
• draw the force (vector)
• determine the components.

4. Use Newton’s 1st Law to write the equations to be solved.

5. Solve the equations for the unknown quantities.

Each of these steps will be explained in detail below. In section 1.5 there are examples
showing the Process being used. Following that we will be doing a large number of exercises
in class.

GOAL :

One of the goals of this course is for you to develop the ability to think physically about
the mechanics of the body. The emphasis is on the conceptual and qualitative reasoning.
The quantitative steps that follow we do only to provide an objective check of “are we
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correct?” Remember to focus your efforts on Steps 0, 1 and 2 since that is where we will
develop our ability to think physically.

What we do here in this chapter we will refine in section 2.4 when we study torque, which
is the physical cause of rotation. Since the motion of the human body is defined primarily
by its articulations (the joints) most of the biomechanical examples and exercises will be in
that chapter. Keep in mind that the Process we develop here will be same process we apply
in those situations.

1.4.0 Identify the Object!

As we saw in 1.3.1 it is critical to clearly identify what is being acted upon. If we are unclear
about this choice, it becomes possible to mix-up cause and effect. This is doubly true in the
biomechanical context where we are asking about the reaction on or in the person’s body
because of forces that they are exerting on something else.

Be very clear and specific about what is the object. Only after you have specified the
object can you expect a clear answer to questions like “what is the force?”

Write it down: what is the object?

1.4.1 Identify the Forces

The purpose of this step is to name what forces are acting on the object. There is no algebra,
trigonometry or arithmetic to perform in this step. Here is when you think physically
about the situation.

Think about this: what is interacting with the object? In this step you should first name
these interactions. The Earth is interacting with the object, obviously, so there is gravity
acting on the object. But is the object touching a surface, or surfaces? If yes, then there
will be normal (or normals, if more than one surface) acting on the object. Depending upon
the details of the situation, there might be friction. Are there any strings, ropes, or chains
attached to the object? Then there will be a tension (or tensions) acting on the object. Is
there some other object, or a person, touching, pushing, pulling or in some way interacting
with the object? Can you name what kind of forces those exert? (It is acceptable to just call
such forces “F⃗” with no special name or symbol).

Write it down: what are the forces acting on the object?

Once you’ve written out this list forces keep it where you can see it. You will check what
you do in the later steps against this list.

1.4.2 Draw the Free-Body Diagram

The idea of a Free-Body Diagram (abbreviated “FBD”) is that the motion of the object is
affected only by the forces that are acting on it. Once we have found the magnitude and
direction of these forces, the actual causes of each of these forces does not matter. For this
reason we can draw the object by itself, the forces acting on it, and then forget about every-
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thing else. The resulting diagram is visual representation of the geometric information that
will be needed to solve for any unknown forces.

To prepare for what we will be doing in chapter 2 draw the FBD as a cartoon of the
Object, with the forces drawn where they are acting on the Object. For the question of “do
the forces sum to zero?” the location of the forces does not matter. But in chapter 2, the
location of the forces is critical. Practice drawing the FBD this way.

Using your choice from Step 0 and Newton’s 3rd Law you can determine the direction
of the forces exerted in an interaction. Be clear to yourself about what is the object to find
the direction of the force acting on it due to an interaction. (Think back to the “pushing on
a chair” experiment from 1.3.1 as an example of how this kind of thinking finds the correct
force.)

Drawing?

Drawing is something I see students struggle with, all the time. As I said at the very
beginning of this text, I do not expect you to become physicists. Neither do I expect you to
be proficient as artists. I will not be judging your diagrams aesthetically. And (here’s the
hard part:) neither should you.

The purpose of the Free-Body Diagram (FBD) is to bring together in one place all the
geometric information about the object’s interactions, qualitatively. You do not need to use
ruler or protractor; a simple sketch is the goal. It does not have to be “beautiful”, it just has
to show us what we need.

Think Physically!

After you have drawn the FBD, go back and check the list you made in Step 1. Did you
include each interaction you listed? This is the place to stop and think physically about the
situation. Having drawn the object do you now see if you forgot an interaction in Step 1?
This is the place to stop and check for consistency.

Before moving on to the next step you should do one small qualitative check of your
results here: Sketch the sum of the vectors you have drawn on your FBD. If the object is in
static equilibrium, then these vectors must sum to zero.

If they can not be made to add to zero, then look carefully at the direction of each force,
and ask yourself if they might be pointing in a different direction. (In the examples in
section 1.5 we will explore how to determine the direction of friction, when it is present.)

If you have confidence in the directions, then play with the magnitudes. Remember that
the FBD is a qualitative representation, and that the magnitudes you drew were guesses.
Can you make the forces sum to zero by making one of the force vectors longer or shorter
without changing their direction? Try it!

Take your time here, as this the part where you think physically about the situation.
Steps 0, 1 and 2 are where are where you are doing physics. This is so extremely important
that I will repeat it here:

GOAL : Thinking Physically
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Sketching the forces acting on the object using the Free-Body Diagram is the place
where you can think physically about the situation. Reasoning about the necessary
directions and magnitudes of those forces is where you are doing physics. It is one of
the main goals of this course to develop this skill.

While the focus of the course is on these steps to develop our physical reasoning, the
later steps that follow (3 through 5) will be used to obtain quantitative answers. That will
give us precise and objective values that we can use to judge the correctness of our reasoning
and process.

A structured approach to drawing a FBD

The “conventional” drawing a FBD presented in textbooks (and practised in high school) is
small dot (representing the Object) surrounded by arrows starting on the dot and pointed
away from it (representing the forces acting on the Object). This is usually presented as a
single step with very little explanation, detail, or depth.

Here I advocate for a much more structured approach. The steps outlined here create
opportunities to reason physically about the situation, and to potentially even solve the
problem!

Drawing a Free-Body Diagram (FBD)

2A. Draw a cartoon of the Object, with each of the forces identified in Step 1 drawn on
the object where they act.

2B. Draw the “conventional FBD” with the forces each starting on a dot (which repre-
sents the object).

2C. Draw the sum of forces, in counter-clockwise order around the forces in the dia-
gram from Step 2B (usually starting with gravity).

2D. Think Physically to correct the sum, if necessary: Adjust magnitudes; Find fric-
tion; etc. Iterate between 2C and 2D until the sum is correct.

2E. Explain physically what the correct sum means for the Object’s static stability or
trajectory.

This point of this approach is that the “drawing of FBD” is not a single step, but is
instead a process that allows us, with just a few simple sketches, to reason physically about
the problem at hand, and possibly even solve it. The examples in section 1.5 at the end of
this chapter will demonstrate this approach in detail.

1.4.3 Components

The goal of this process it determine the unknown forces that are acting on the object.
Those forces will be in response to the other forces acting on the object. These forces all
relate together because their sum must be zero.
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This is the first step where we must do some mathematics, specifically some geometry
and trigonometry, to find the components of the forces acting on the object. For each force
acting on the object, in terms of the quantities that you do know and the quantities that you
do not know, write it down: What are the components of each force?

There are many examples of this in section 1.5. I will demonstrate examples in class.
And, with my guidance, you will practise many exercises to develop the skills and the proper
approach to achieving this Step.

1.4.4 Use Newton’s 1st Law

Newton’s 1st Law of Motion states that an object’s velocity is constant if, and only if, the
forces acting on the object sum to zero. In the context of this course, where the objects we
study are at rest and stay at rest, their velocity is zero and remain zero because the sum of
forces on the object is zero.

Newton’s 1st Law can be written:
∑

F⃗ = 0⃗N. But, for our practical purposes, it is the
components of this equation that are important:∑

Fx = 0N (1.9)∑
Fy = 0N (1.10)

When we write out the sum of vectors in terms of their components we will then have equa-
tions that relate together numbers. These numbers we can then determine using algebra
and our calculator. This will be how we get quantitative answers.

The work that was done in Step 3 can now be substituted into these equations to produce
the mathematics that must be solved. Take your time, and be very careful with the signs
and the units of the components and values as you substitute them.

1.4.5 Solve for the Unknowns

Use algebra to isolate the unknowns in the equations you generated in Step 4. Then use
your calculator to determine their numerical values. At the end of this step, when you have
solved for the unknowns, go back and have a look at the sketch you made of the sum of
forces. Check to see if your result matches with your qualitative predictions.

At the very end of this go back and re-read the statement of the problem. What were
you asked to determine? If you were asked to find a mass, then you should check to see if
your result has the correct units. If you were asked to find a force, then your result should
be a vector, specified either by its components or by its magnitude and direction. Read the
statement of the problem to make sure that you have answered what was asked!

1.4.6 Comments on “Solving Problems”

Before we get into the examples, there are a few things about “solving” textbook physics
problems that I need to comment on.
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“Solving”

Reading textbook examples can leave you with the impression that, if you just follow the
steps, you will always go from start to finish and end up with the correct answer. This is
false. Problem solving is an iterative process. Part of problem solving is exploring alterna-
tives. In the examples that I have written I have tried to be explicit about this.

Unless you already have some mastery of the subject, or are some type of savant, it is
only rarely that you will know the complete answer just by reading the description of a
physics problem. More generally you will have incomplete information and you will have to
try different possibilities until you can find a consistent description of the situation.

If this does not yet make sense, I can only ask for your patience until we’ve looked at
some examples involving friction.

Why practise

Learning is about changing how you think. The most effective way to do that is to start by
knowing how you think now. So always begin solving a problem by writing out what you
think the answer will be like. Yes!, make a guess! But after that, do follow the steps of the
Process. At the end, at the end of Step 5, compare your result with your initial guess. Are
they different? If yes, how do they differ? Are they different by a few percent? Or are they
completely opposite?

This is the place to pause and reflect on how you are thinking about these situations,
and figure out what you need to change in your thinking. I’m here to help with that step,
but it will go much faster if you contribute towards identifying where you need the help.
Doing the exercises is the place where you work on that analysis.

So now, let’s get to work.

1.5 Examples

The discussion in the previous section was, admittedly, vague and abstract. We will gain an
appreciation for the strength of The Process by seeing detailed examples of its use in specific
contexts.

In all of the examples worked on below the Object is some non-specific thing. It’s maybe
just a rock, or a potato, a volleyball, or some huge wad of melted-together Halloween candy.
While part of the goal of this course is to prepare you for Biomechanics by learning how
to thing objectively and mechanically about the human body, human anatomy is far too
complex to use as a starting point – so we will choose to begin by studying simple geometric
inanimate things. It does not matter what the object is in the examples below. What does
matter is following how The Process lets us determine the magnitudes and directions of
possibly unknown forces that are acting on the object.

To get the most out of reading these examples I can recommend that you work through
them yourself. While reading have a piece of paper next to you and have something to
write with. Try each step yourself and check what’s done in the example. Remember that
problem-solving is an iterative process. Think about, then try something, and then check if
it makes sense; go back and try it a different way if some part is not working.
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1.5.1 Gravity and Tension

If an object hangs from a single rope, and there nothing else touching it, then the tension
must balance the object’s weight. In that case the magnitude of the tension must equal mg.
If we pretend to be ignorant of the result, we can use The Process to solve for this value. A
side benefit of knowing what the answer is before we work the problem is that we can focus
our attention on the way that each step contributes towards the answer.

Example 1.1 : Object hanging by one rope

An object of mass m = 1.37kg is hanging from the ceiling by a rope. What force does the
tension in the rope exert on the object?

Before doing any work it is always a good idea to ask “what will the answer look like?”
In this example we’re asked for the tension acting on the object. This tension is a force,
so our answer will be a vector with units of newtons. When we get to the end we have
to check that our answer has this form.

Step 0: The object is the thing hanging on the end of the rope, represented by the circle
in the diagram above. Drawing this picture specifies the geometry of the situation. The
geometry is important as it determines the directions of the forces acting on the object.

Step 1: The object is interacting with the Earth, and that interaction is the force of
gravity. The object is attached to the rope, and the rope is exerting a force of tension on
the object. It is important to note that the ceiling is not touching the object. The ceiling
is supporting the rope, but it is the rope that is supporting the ball. The ceiling may be
the ultimate cause of the object’s support, but it is the rope that exerts the force on the
object, not the ceiling. There are no other interactions worth including. The object is in
static equilibrium, so these forces must sum to zero.

In summary, the two interactions with the Object are

• the Earth, exerting gravity; and
• the rope, exerting tension.

(Always end this step by making an explicit list of the forces.)

Step 2: The Free-Body Diagram is below. Next to that we sketch a qualitative check of
the sum of forces.
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F⃗G

T⃗

F⃗G

T⃗

F⃗G

T⃗

In this example the check for the sum of forces is simple only because we already have
intuited the answer to the question. In later more complex examples we will see how
performing this simple-looking step thoughtfully provides important information.

Step 3: In this step we choose our coordinates and find the components of each force
in the problem. This information will be used in step 4 to write the Newton’s 1st Law
equations for the system. Our choice of coordinates will be the standard one with the
+x-axis towards the right and the +y-axis upwards.

x

y

F⃗G

FG,x = 0N
FG,y =−mg

x

y

T⃗
Tx = T cos90◦ = 0N
Ty = T sin90◦ =+T

The components of the tension require some thought and explanation.

Our purpose with this example is to follow how The Process leads us to the correct
answer. Our approach, in this situation where we already know the answer, is to pre-
tend that we do not know the answer so we can examine The Process. At this step of
finding the components we have to be careful to separate the known from the unknown.
We do not know the magnitude of the tension, the value of the number T. That is the
unknown we are trying to solve for.

What we do know is the direction of the tension. Since the object is hanging from the
ceiling in static equilibrium we know from experience (and experiment, if you insist!)
that the rope will be vertical. The rope can only pull on the object. Thus the tension T⃗
is vertically upwards, along what we chose to be the +y-axis. Using the rules of vector
components we find that there is no horizontal component (Tx = 0N) and the vertical
component is Ty =+T. (Read that equality very carefully, and review subsection 0.3 as
necessary to understand what quantities are being related.)

Step 4: Since the object is in static equilibrium Newton’s 1st law of motion requires
that the forces sum to zero. In this situation this becomes the equation

F⃗G + T⃗ = 0⃗N (1.11)

The components of this equation are

FG,x +Tx = 0N (1.12)
FG,y +Ty = 0N (1.13)
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Now we can look back to the components that we found in Step 3. All x-components
are zero, so that equation is just “0 = 0” and does nothing for us. The equation for the
y-components is

−mg+T = 0N (1.14)

Though it is possible to substitute values here, there are two things you should know.

First, the process of substituting values is part of Step 5; it is part of solving for the
numerical values of the unknowns. Try, as much as possible, to keep the parts of that
Step separate from the parts of this Step.

Second, it is a good habit to keep the equations expressed in terms of symbols instead
of numbers before you do the algebra required to solve for the unknowns. Writing one or
two symbols is much easier than copying around four or five digits because it drastically
reduces the possibility of mis-copying digits, and getting the wrong number at the end.
Keep the symbols until after the algebra has been done, then substitute values.

Step 5: If we solve that simple equation we obtain T = mg. This says that the mag-
nitude of the tension in the rope (the magnitude of T⃗) equals the weight of the object
(the value of mg), as expected! Using the value given for the mass (m = 1.37kg) and the
standard gravity (g = 9.81N/kg) we find that the magnitude of the tension in the rope
is T = 13.4N.

Answer: Looking back to the beginning of your work for this example we can check that
we were supposed to get a force vector as an answer. So we say that the force exerted
on the object by the tension in the rope is 13.4N, upwards.

The previous example was not challenging to solve, since we already knew the answer!
If it is just one rope, then the tension is just the weight. But in the case of multiple ropes
each rope will only support a portion of the object’s weight. And if the ropes are not parallel
to each other they will not just support a portion of the object, they will also have to oppose
portions of the forces exerted by the other ropes. In such cases the answers will not be
intuitively obvious. In such cases the answers can only be obtained by following The Process.

Example 1.2 : Object hanging by two ropes, symmetrically

An object of mass m = 1.37 kg is hanging from the ceiling by two ropes. Each rope makes
an angle of 60◦ with the horizontal. What is the magnitude of the tension in each rope?

60◦60◦

In this example we’ve been asked to find the magnitudes of the tensions in the two
ropes. So our final answer will be numbers, each with units of newtons.

Step 0: The object is the thing (represented by the circle) being suspended by the ropes.

Step 1: The object is interacting with the Earth (gravity), and is attached to the two
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ropes (tension). Since there are two ropes, there will be two separate tensions. We will
call these tensions T⃗L and T⃗R for the tension on the left and on the right, respectively.
To watch how The Process brings us to the answer we will pretend ignorance and not
assume that the tensions are equal to each other. We will also resist any temptation to
assume that each tension is “1

2 mg” (which is wrong!). There are no other interactions
worth including. The object is in static equilibrium, so the forces must all sum to zero.

In summary, the three interactions with the Object are:

• the Earth, exerting gravity;
• the rope on the left, exerting tension; and
• the rope on the right, exerting tension.

(Always end this step by making an explicit list of the forces.) It is important to remem-
ber that the tensions due to the ropes are separate forces acting in different directions.

Step 2: The Free-Body Diagram (FBD) and the check of the sum of forces is below. (The
different colours for the forces are of no significance – they are just so we can distinguish
between them visually.)

F⃗G

T⃗RT⃗L

F⃗G

T⃗RT⃗L
T⃗L

T⃗RF⃗G

After drawing the FBD we copied the force vectors over to the side to check if they sum
to zero. Oh no! They don’t! Did we make a mistake? No. This is not a mistake. This
is the place where we uncover something about what is happening physically in the
system.

We know that the forces must sum to zero. At this point in the problem all we know
is the directions of the forces: gravity is downwards, and each tension points along the
direction of their respective rope. What we do not know are the magnitudes of these
forces. So our check, drawn above, is not a mistake. It is the place where we can figure
out the relative magnitudes of the forces in the system.

F⃗G

The tension T⃗R is
along the direction
of its rope.

F⃗G

The tension T⃗L is
along the direction
of its rope.

F⃗G
T⃗R

The tension T⃗R and the
weight F⃗G must add to some-
thing that can be balanced
by the tension T⃗L.

F⃗G
T⃗R

T⃗L

Please note that these sketches of the forces do not have to be quantitatively precise.
You do not have to use your ruler or protractor to make these sketches. Drawing them
free-hand will be enough to find that: (1) each tension is greater in magnitude than half
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the weight; and (2) the tensions are equal to each other in magnitude. This is important
information for us to know so that we can check our results at the end of Step 5.

Step 3: Steps 0, 1, and 2 were us thinking physically about the situation. To go further,
and get quantitative results, we will need to form mathematical equations that describe
the situation. Those equations will be the components of Newton’s 1st Law of motion.
And to write those, we will need the components of each force in the problem:

x

y

F⃗G
FG,x = 0 N
FG,y =−mg

x

y
T⃗R

60◦

TR,x = TR cos60◦

TR,y = TR sin60◦

x

y
T⃗L

60◦ 120◦

TL,x = TL cos120◦

TL,y = TL sin120◦

Note that for the tension on the left we were given the angle measured from the hori-
zontal on the left (from the −x-axis). At this step we can use the geometry we’ve drawn
to find the angle measured from the +x-axis to use the standard expression for the
components of a vector.

Step 4: For this situation Newton’s 1st Law has the expression:

F⃗G + T⃗R + T⃗L = 0⃗ N (1.15)

The x-component of this equation is

FG,x +TR,x +TL,x = 0 N (1.16)
0 N+TR cos60◦+TL cos120◦ = 0 N (1.17)

The y-component of this equation is

FG,y +TR,y +TL,y = 0 N (1.18)
−mg+TR sin60◦+TL sin120◦ = 0 N (1.19)

In this system of equations there are two quantities we do not know: the magnitude of
the tension on the right TR and the magnitude of the tension on the left TL.

Step 5: Solving for the two unknowns in this situation is a case of solving two equations.
If you remember algebra from high school we proceed by isolating one unknown from
one equation, substituting that expression into the other equation, and then solving the
resulting equation for the remaining unknown. It does not matter which unknown you
solve for first, the answers will always be the same.

Isolating TL in the x-component equation gives

TL =− cos60◦
cos120◦ TR =− (+0.500)

(−0.500) TR =+TR (1.20)

At this step we can see that the tensions, whatever their numerical values turn out to
be, will be equal to each other. This is as we might have guessed, given the way the
ropes are symmetrically on each side of the object.
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Substituting that result into the y-component equation gives

−mg+TR sin60◦+ (+TR) sin120◦ = 0 N (1.21)

Solving this for TR gives

TR = +mg
sin60◦+sin120◦ =

+(1.37 kg)(9.81 N/kg)
(+0.866)+ (+0.866)

=+7.76 N (1.22)

(Here we can pause to notice that this is slightly greater than half the object’s weight.
It’s a little greater than half because each rope is not just supporting half the object’s
weight, it also has to pull a little horizontally to balance the other rope.)

Answer: The result of Step 5 means that TR = TL = 7.76 N. (We pause to check the
statement of the problem, and see that we were asked to find the magnitudes.)

Continuing along the theme of “suspended objects” we can now consider a more general
arrangement, where the ropes are asymmetrically supporting the object. Here, obviously,
the tensions can not be the same. The interesting question to think about is which rope will
have greater tension? Is it the rope that is more vertical? Or is it the rope that pulls more
to the side? In cases like this, where intuition provides no guide, it is The Process that can
lead to the correct conclusion.

Example 1.3 : Object hanging by two ropes, asymmetrically

An object of mass m = 1.37 kg is hanging from the ceiling by two ropes. The rope on
the right makes an angle of 45◦ with the horizontal, and the rope on the left makes an
angle of 60◦ with the horizontal. What is the tension in each rope?

45◦60◦

Step 0: The object is the thing (represented by the circle) being suspended by the ropes.

Step 1: As in the previous example, the object is interacting with the Earth and the
two ropes. There are no other interactions worth including. The object is in static
equilibrium, so the forces must all sum to zero.

In summary, the three interactions with the Object are:

• the Earth, exerting gravity;
• the rope on the left, exerting tension; and
• the rope on the right, exerting tension.

(Always end this step by making an explicit list of the forces.) It is important to remem-
ber that the tensions due to the ropes are separate forces acting in different directions.

Step 2: The Free-Body Diagram (FBD) is below.
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F⃗G

T⃗R
T⃗L

F⃗G

T⃗R
T⃗L

The check of the forces summing to zero can be constructed in the way shown in the
previous example.

F⃗G

The tension T⃗R is
along the direction
of its rope.

F⃗G

The tension T⃗L is
along the direction
of its rope.

F⃗G

T⃗R
The tension T⃗R and the
weight F⃗G must add to some-
thing that can be balanced
by the tension T⃗L.

F⃗G

T⃗R

T⃗L

Here is a good place to pause and take a few moments to think physically about the sum
of vectors that we just drew. Can we reason about why the tension on the left will be
greater?

The only reason there is tension in the ropes is because gravity is pulling downwards
on the object. The tensions in the ropes work to oppose that. The rope that is closer to
being vertical is better positioned to exert a force along that direction. So it makes sense
that the rope that is more vertical (the rope on the left) carries more of the weight.

The rope on the left does not pull vertically only. It is pulling towards the left as
well. The rope on the right must balance that horizontal component of force. Because
the rope on the right is on an angle, if it has any tension, it will support some of the
weight. For these reasons the rope on the right must have some tension, and the rope
on the left does not carry all of the weight.

Step 3:

x

y

F⃗G
FG,x = 0 N
FG,y =−mg

x

y
T⃗R

45◦

TR,x = TR cos45◦

TR,y = TR sin45◦

x

y
T⃗L

60◦ 120◦

TL,x = TL cos120◦

TL,y = TL sin120◦

Step 4: Newton’s 1st Law for this system is

F⃗G + T⃗R + T⃗L = 0⃗ N (1.23)
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The x-component of this equation is

FG,x +TR,x +TL,x = 0 N (1.24)
0 N+TR cos45◦+TL cos120◦ = 0 N (1.25)

The y-component of this equation is

FG,y +TR,y +TL,y = 0 N (1.26)
−mg+TR sin45◦+TL sin120◦ = 0 N (1.27)

In this system of equations there are two quantities we do not know: the magnitude of
the tension on the right TR and the magnitude of the tension on the left TL.

Step 5: We proceed as in the previous example to solve the system of two equations for
the two unknowns. Isolating TL in the x-component equation gives

TL =− cos45◦
cos120◦ TR =− (+0.707)

(−0.500) TR =+1.414TR (1.28)

At this step we can see that the tension on the left will be greater than the tension on
the right. This was the result of our reasoning in Step 3 when we checked the sum of
forces.

Substituting that result into the y-component equation gives

−mg+TR sin45◦+ (+1.414TR) sin120◦ = 0 N (1.29)

Solving this for TR gives

TR = +mg
sin60◦+1.414 sin120◦ =

+(1.37 kg)(9.81 N/kg)
(+0.707)+ (1.414)(+0.866)

=+6.96 N (1.30)

Using this result in the first equation obtained in this Step, we get

TL = 1.414TR = (1.414)(6.96 N)= 9.84 N (1.31)

As expected from the physical reasoning we did in Step 3 the tension in the rope on
the left is greatest. If we had not obtained this result we would be wise to pause, and
then carefully check our algebra. Common mistakes to look for are multiplying when
we should divide, forgetting a sign, or mis-copying digits in numbers.

Answer: The magnitudes of the tensions in the two ropes (that we were asked for) are
TR = 6.96 N and TL = 9.84 N.

There are a couple of comments we can make about this result.

If we compare with the results of the previous example (where the ropes were sym-
metrically on each side of the object) we see that the tension on the left is greater than
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in the symmetric case, while the tension on right is less than in the symmetric case. We
can think of this being a transfer of the weight towards the left.

The most important thing to notice is that the magnitudes do not “sum to zero”. If we
had tried to write something like “TR +TL = mg”, then we would have been completely
wrong, and would have no way to solve for anything! (Think back to the 3-4-5 triangle.)
This is why we must add the forces as vectors (using the components), not as numbers.

1.5.2 Gravity and Contact

Even though objects in contact with surfaces are a more common situation than “object
hanging on ropes”, we started with examples of gravity and tension because contact forces
are more complicated to think about physically and to analyze mathematically.

Recall what was said in section 1.2: The normal is not “mg”. The normal is the part of
the force of contact that stops the object from going through the surface. Its magnitude is
an unknown that must be solved.

Friction is a question. The force of friction can be found by asking “if there was no
friction, which way would the object move?” The answer tells then tells us that, when there
is friction, it will oppose the supposed motion by pointing the direction opposite. Because
friction is usually not a given, we may have to guess what the forces on the Free-Body
Diagram (FBD) are, and then correct ourselves after checking the sum of forces.

The next few examples will illustrate these points.

Example 1.4 : A Heavy Box being pulled, not moving

A box of mass m = 7.34 kg does not move while being pulled on. The pull is 72.0 N
towards the right at an angle of 45◦ above the horizontal. Find the magnitude of the
normal. Find the friction between the box and the floor that keeps the system in static
equilibrium.

pull

We are being asked to find the magnitude of the normal (n) and the force of friction
( f⃗ ). Our answers will have to be a number and a vector, respectively, each with units of
newtons.

Step 0: The object is the box.

Step 1: The box is interacting with the Earth, the floor, and the rope pulling it. There
is gravity, as usual. Because of the rope pulling it there will be tension acting on the
box. Because it is touching the floor there will be a normal on the box at surface of
contact, and possibly friction. Friction will be non-zero if necessary to keep the box in
equilibrium.

In summary, there are three interactions with the object that cause four forces:
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• the Earth, exerting gravity;
• the contact with the surface, which causes

- the normal (preventing it from moving through the surface), and
- friction (which acts against it sliding across the surface);

• the pull on the box upwards and to the right.

(Always end this step by making an explicit list of the forces.)

Step 2: When friction is present we must first find which way the object would move
without friction. Without friction the FBD and check of the sum of forces look like this:

F⃗G

P⃗

n⃗

F⃗G

P⃗

n⃗

F⃗G

P⃗

n⃗

With no friction included we can see that the sum of forces points towards the right. We
know that friction will be parallel to the surface. So we can conclude that friction will
point horizontally towards the left to oppose the sum of all the other forces. We can now
correct our FBD:

F⃗G

P⃗

n⃗

f⃗

F⃗G

P⃗

n⃗

f⃗

With the correct FBD we can now check the sum of forces. Let’s construct it step by
step:

F⃗G

P⃗
F⃗G

P⃗

The normal is

vertical.

F⃗G

P⃗

Friction is horizon-

tal.

F⃗G

P⃗

n⃗
F⃗G

P⃗

n⃗
f⃗

Now that we have the magnitudes correct (qualitatively), let’s re-draw this sum of forces
a little larger so that we can see how the forces relate. We do this so that we can pause
for a moment and think about what is happening physically.
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F⃗G

P⃗

n⃗

f⃗

Gravity pulls downwards. The tension pulls on the box upwards towards the right.
The normal acts to stop the box from moving through the surface. The normal must
then counter the sum of the vertical components of all other forces acting on the box.
(Since the friction will be parallel to the surface, it does not contribute vertically, and we
do not need to know it to find the normal.) The downwards contribution from gravity is
partially balanced by the upwards component of the tension. Consequently the normal
can be less than “mg” (at the end of Step 5, when we’ve solved for its value, we can
check if this is true). Physically, the tension is pulling the box away from the surface,
reducing the pressure on the bottom of the box.

What is friction? If there were no friction, the sum of gravity, the normal and the
pull would point towards the right, and the object would begin to slide in that direction.
Friction opposes that possible motion by pointing towards the left (which we can check
once we have solved for it at the end of Step 5). Because the object remains in static
equilibrium the sum of all forces must be zero. With the requirement that the friction
be parallel to the surface, we can complete the diagram.

Step 3: Before we can write the equations for Newton’s 1st law in Step 4 we need to
have the components of each force acting on the object.

x

y

F⃗G
FG,x = 0 N
FG,y =−mg

x

y
P⃗

45◦

Px = P cos45◦

Py = P sin45◦

x

y
n⃗

nx = 0 N
ny =+n

x

y

f⃗

fx =− f
f y = 0 N

In this system there are two quantities we do not know: the magnitude of the normal
n, and the magnitude of the friction f .

Step 4: Because the box is in static equilibrium, Newton’s 1st Law applies. The sum of
forces acting on the box must sum to zero:

F⃗G + P⃗ + n⃗+ f⃗ = 0⃗ N (1.32)

The x-component of the sum of forces equation is

FG,x +Px +nx + fx = 0 N (1.33)
0 N+P cos45◦+0 N− f = 0 N (1.34)

The y-component of the sum of forces equation is

FG,y +Py +ny + f y = 0 N (1.35)
−mg+P sin45◦+n+0 N= 0 N (1.36)
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Step 5: Solving the x-component equation for the friction gives

f =+P cos45◦ = (72.0 N)cos45◦ = 50.9 N (1.37)

Note carefully that the solved value is the magnitude of the friction. Checking our
algebra we find that it is (as it must be) positive. This result means that our choice of
direction for the friction was correct. If our choice had been incorrect we would have
solved for f and obtained a negative number. That would have warned us that our
assumption about its direction was wrong, because magnitudes are non-negative.

Solving the y-component equation for the normal gives

n =+mg−P sin45◦ =+(7.34 kg)(9.81 N/kg)− (72.0 N)sin45◦ (1.38)
=+72.0054 N−50.9117 N=+21.1 N (1.39)

(Remember to not round your results until the last step.) The weight and the tension
are essentially the same in magnitude. But since they are different directions they do
not cancel each other vertically. The normal makes the difference. Note carefully that,
in line with our prediction back in Step 2, the normal is less than the weight.

Answer: Our answers are that the normal has a magnitude of 21.1 N, and the force of
friction is 50.9 N towards the left.

Example 1.5 : Sphere wedged in an angled corner

A corner is formed by a vertical surface and a surface inclined by 36.9◦ above the hor-
izontal. A sphere of mass 4.078 kg is wedged in this corner. At each point of contact
between the ball and the surfaces there is a normal force acting. Find the magnitudes
of the two normals. (There is no friction between the ball and the surfaces.)

36.9◦

We are asked to find the magnitudes of the two surface-contact normals. We must not
expect for either of them to equal the object’s weight. We should also not expect them to
equal each other!

Step 0: The object is the ball that is wedged in the corner.

Step 1: The object is interacting with the Earth (gravity) and is touching two surfaces.
At each surface of contact there will be a normal force. We are told explicitly that there
is no friction at either surface. In summary, the three interactions with the Object are

• the Earth, exerting gravity;
• the vertical surface to the left, exerting a normal force but no friction; and
• the inclined surface below and to the right, exerting a normal force but no friction.

(Always end this step by making an explicit list of the forces.)
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Step 2: we will call the normal due to the vertical surface n⃗v and the normal due to the
sloped surface n⃗s. The FBD and the check of the sum of forces is as follows:

F⃗G

n⃗v

n⃗s

F⃗G

n⃗v

n⃗s

Because the vertical surface exerts a horizontal force the sum-of-forces diagram is a
right-triangle.

Step 3: We now find the components of the forces acting on the object. The tricky one
to find will be the components of the normal at the sloped surface. Let’s have a closer
look at the geometry at the point of contact.

n⃗s
36.9◦

90◦ The normal is perpendicular to the surface, but the surface is
inclined. From the horizontal to the incline is 36.9◦, and from
the incline to the normal is 90◦. Consequently the angle from
the horizontal to the normal is θ = 36.9◦+90◦ = 126.9◦.

Now we can write out the components of the known and unknown forces:

x

y

F⃗G
FG,x = 0 N
FG,y =−mg

x

y

n⃗s

nv,x =+nv

nv,y = 0 N

x

y
n⃗s

126.9◦

ns,x = ns cos126.9◦

ns,y = ns sin126.9◦

Step 4: With the object in static equilibrium Newton’s 1st Law requires that

F⃗G + n⃗v + n⃗s = 0⃗ N (1.40)

The x-component of this equation is

FG,x +nv,x +ns,x = 0 N (1.41)
0 N+nv +ns cos126.9◦ = 0 N (1.42)

And the y-component is

FG,y +nv,y +ns,y = 0 N (1.43)
−mg+0 N+ns sin126.9◦ = 0 N (1.44)

Step 5: The x-component equation has two unknowns in it, while the y-component
equation has only one unknown in it. So we solve the y equation first:

−mg+ns sin126.9◦ = 0 N (1.45)

ns = +mg
sin126.9◦ =

(4.078 kg)(9.81 N/kg)
0.800

= 50.0 N (1.46)
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Putting this result into the x-component equation, we solve for nv:

nv +ns cos126.9◦ = 0 N (1.47)
nv =−ns cos126.9◦ =−(50.0 N)(−0.600)=+30.0 N (1.48)

We note (with relief!) that the magnitude of the normal from the vertical surface is
non-negative, as it must be. (Also we note that mg = 40.0 N, which means that the
sum-of-forces triangle is our old friend the 3-4-5 Pythagorean triangle!) As expected
from Step 3 we find that ns > nv.

Answer: The two normals have magnitude nv = 30.0 N and ns = 50.0 N. We note that
one of these is less than the object’s weight, and the other is greater than the object’s
weight. A fine example of how n ̸= mg!

Example 1.6 : Person moving a Chair

A person is pushing a chair away from themselves. They are
applying a force of 25 N directed 70◦ below the horizontal.
The person has a mass 81 kg. What is the magnitude and
direction of the friction acting at the person’s feet?

The force we are given in the problem statement is the force that the person exerts
on the chair. But we are asked to determine the forces acting on the person. So we
must apply Newton’s 3rd law to resolve the force that the chair exerts on the person.
(Remember the little experiment you were asked to conduct: When you are pushing on
a chair, it pushes on you. You should have experienced this by using your little finger to
sense the force acutely.)

Step 0: The object is the person.

Step 1: The person is interacting with the Earth (so there is gravity), the floor they
are standing on (so there is a normal and friction), and the chair (by Newton’s 3rd
Law this will be the reaction to the person’s push). The person is pushing downwards
and towards the right on the chair (action). By Newton’s 3rd Law the chair is pushing
on the person upwards and towards the left (reaction). In summary, there are three
interactions with the person (which is the object!) which exert four forces on them:

• the Earth, exerting gravity;
• contact with the surface, which causes

- the normal (preventing them from moving through the surface), and
- friction (which acts against them sliding across the surface);

• contact with the chair, which exerts a push (the reaction) on them.

(Always end this step by making an explicit list of the forces.)

Step 2: The FBD and check of sum of forces:
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F⃗G

n⃗
f⃗ P⃗

F⃗G

n⃗

f⃗

P⃗

F⃗G

f⃗

n⃗

P⃗

The check of the sum of the forces shows us that, with the pushing acting on the person
towards the left, friction must act on the person towards the right. Most people do not
find this result obvious. This process above is what leads us to this conclusion. These
steps are where we think about the system, physically. Their importance can not be
over-stated.

(As another way to see why the friction on the person must point towards the right,
imagine the following: Replace the chair with a parked car, and put the person on a
skateboard. If they were to push in exactly the same way as here, they would be rolling
towards the left. This means that, if there is friction, it will oppose that motion by
acting towards the right.)

Step 3: The components of the known and unknown forces:

x

y

F⃗G

FG,x = 0 N
FG,y =−(81 kg)(9.81 N/kg)=−794.6 N

x

y

f⃗

fx =+ f
f y = 0 N

x

y n⃗

nx = 0 N
ny =+n

x

yP⃗

70◦

110◦

Px = 25 N cos110◦ =−8.55 N
Py = 25 N sin110◦ =+23.49 N

The magnitudes of the normal (n) and friction ( f ) are both unknowns, and our choice of
direction for the friction is our educated guess. But we are only asked to find the friction
force.

Step 4: This is a situation to which Newton’s 1st Law applies:∑
F⃗ = 0⃗ N (1.49)

In this specific situation the sum of forces is

F⃗G + f⃗ + n⃗+ P⃗ = 0⃗ N (1.50)

The x-component of this equation is:

FG,x + fx +nx +Px = 0 N (1.51)
(0 N)+ (+ f )+ (0 N)+ (−8.55 N)= 0 N (1.52)

The y-component of the Newton’s 1st Law equation is:

FG,y + f y +ny +Py = 0 N (1.53)
(−794.6 N)+ (0 N)+ (+n)+ (+23.49 N)= 0 N (1.54)
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Step 5: we are only asked for the friction. Solving the equation for the x-component we
obtain f = 8.55 N. Note that, if we had assumed the incorrect direction for the friction,
we would have obtained a negative number at this step. (Since a magnitude must be
positive, that would have signaled that something need to be corrected in some previous
step.) Thus we we correct in our physical reasoning in Steps 1 and 2.

Answer: The friction acting at the person’s feet is 8.55 N towards the right.

1.5.3 Involving Pulleys

When working on systems involving pulleys, there are two issues we must be careful with.

One: Clearly trace out the path that the rope takes through the system, and remember
that the tension along that rope has the same magnitude along its entire length. Where a
rope makes contact with a pulley is where the rope exerts a force with magnitude equal to
the tension in the rope, and along a direction away from the pulley, parallel to the rope. The
pulley changes the direction but not the magnitude of the tension in the rope. (In pulley
systems when there is more than one rope, carefully trace each one and remember that the
tension in each one may be different from the tensions in the other ropes.)

Two: We will always have to carefully think about which pulley or mass will be the object
since there will be more than one choice possible. Making this decision may involve doing
steps 0 through 2 for each of the possibilities! After that our choice will have to be the object
for which there is only one unknown force, or two unknown numbers.

Example 1.7 : A two-pulley system

A block of weight 18.05 N is suspended by the pulley system shown in the diagram. Find
the magnitude of tension in the rope. Choose the bottom pulley as the object to solve
this problem. (Hint: You will only need to solve the y-component equation of the sum of
forces.)

45.0◦ 20.7◦

18.05 N

We are asked to find the magnitude of the tension in the rope. Our answer then will be
a non-negative number with units of newtons.

That we are told to use the lower pulley as the object reduces the amount of work we
have to do, since we would normally have to try each pulley as the object to find which
one gives the equations we can solve.
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Step 0: In the statement of the problem we are told to use the lower pulley (the one
with the block attached to it) as the object.

Step 1: The lower pulley interacts with the Earth, the hanging weight, and the one
rope in the system. Let’s carefully reason through each contribution.

We list the Earth (as we always must), but, in the case of pulleys, we do not include
the force of gravity acting on the pulley itself. With pulleys we will always assume that
the other forces acting on the pulley (primarily due to the tensions of the ropes touching
it) are much greater than the pulley’s own weight. Not including the pulley’s own weight
should not make a significant quantitative difference to our final results.

The 18.05 N block that is attached to the pulley will pull straight downwards on the
pulley. (If you don’t see why this has to be the case, then consider as a separate problem
the question of what the forces acting on the block are.)

There is a single rope in the system, but it exerts three forces on the lower pulley.
The rope wraps around underneath the lower pulley, and so exerts two forces, one at
each end of the area of contact between the rope and the lower pulley. The rope then
wraps around the upper pulley before returning to attach to the center of the lower
pulley, where it exerts the third force.

T⃗1

T⃗2

T⃗3

The diagram above shows this.

The important thing to remember is that pulleys change the direction, but not the
magnitude of the tension in a rope. This means that the three tensions acting on the
object all have the same magnitude.

To summarize, the forces acting on the lower pulley are:

• The tension pulling up towards the left due to the part of the rope that wraps
under the pulley (call that T⃗1).

• The tension pulling up towards the right due to the part of the rope that wraps
under the pulley (call that T⃗2).

• The tension pulling up towards the right due to the part of the rope that is at-
tached to the center of the pulley (call that T⃗3).

• The attached 18.05 N block pulling downwards (call that F⃗B).

In all subsequent parts we must remember that the magnitudes of the three forces due
to the rope all have the same, common magnitude: |T⃗1| = |T⃗2| = |T⃗3| = T.

Step 2: The Free-Body Diagram for the object, and the check of the sum of forces, is
next:
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T⃗1

T⃗2

T⃗3

F⃗B

F⃗B

T⃗1

T⃗2

T⃗3 T⃗1
T⃗2

T⃗3

F⃗B

Step 3: The components of the known and unknown forces are next. In what follows we
must remember that the three tensions all have the same, common, unknown magni-
tude: |T⃗1| = |T⃗2| = |T⃗3| = T. For both T⃗2 and T⃗3 the angle between them and the vertical
is 20.7◦ (shown in the diagram at the beginning of the problem). If the angle between
the y-axis and the vector is 20.7◦, then the angle between the vector and the x-axis is
90◦−20.7◦ = 69.3◦.

x

y

F⃗B

FBx = 0N
FBy =−18.05N

x

y

T⃗1

T1x = T cos135◦

T1y = T sin135◦

x

y
T⃗2

T2x = T cos69.3◦

T2y = T sin69.3◦

x

y
T⃗3

T3x = T cos69.3◦

T3y = T sin69.3◦

Step 4: The sum of forces acting on the object (the lower pulley) is

F⃗B + T⃗1 + T⃗2 + T⃗3 = 0⃗N (1.55)

The hint was to solve the equation for the y-components:

FBy +T1y +T2y +T3y = 0 N (1.56)
(−18.05N)+ (T sin135◦)+ (T sin69.3◦)+ (T sin69.3◦)= 0N (1.57)

(−18.05N)+T(sin135◦+2sin69.3◦)= 0N (1.58)

(If, out of curiosity, you were to write-out the equation for the x-components, you would
find that cos135◦+2cos69.3◦ equaled zero identically, and there would be nothing left
to solve in that equation. Give it a try, if you have time.)

Step 5: Solving the y-component equation for the unknown tension:

(−18.05N)+T(sin135◦+2sin69.3◦)= 0N (1.59)

T = +18.05N
sin135◦+2sin69.3◦ = 7.00N (1.60)

Answer: The magnitude of tension in the rope is 7.00 N.
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Chapter 2

Torques

stable

un
st

able

If you are trying to support an object you know, from experience, that it will fall over if
you support it at its edge. The magnitude of the force you apply doesn’t matter. If it is
not applied at the correct place, the object will fall over. The sum of forces might be zero,
but if the forces are not applied at the correct position on the object, it can not be in static
equilibrium. The quantity that relates force and position to equilibrium is called torque.

2.1 What is a Torque?

For us, a force is a push or a pull. When we push or pull on something it might move. But,
it might also turn. When a force is applied to an object in a way that might cause it to turn
we can talk about the torque being applied to the object. Examples of applying a torque are
twisting a door knob to open it, twisting the lid of a jar closed, turning a steering wheel in a
car, or the muscles in your forearm turning your hand.

The magnitude of a force measures how rapidly it could change an object’s motion. Sim-
ilarly the magnitude of a torque measures how rapidly it could change an object’s rotation.

We must remember that even if a force is being applied to an object, that object might
remain at rest and not begin moving. An object sitting on the floor is being pulled down-
wards by gravity, but that force is being balanced by the contact force (the normal) of the
floor. Similarly, even if we apply a torque to an object, that object might remain at rest and
not begin turning. We might try to twist open a large pickle jar, but that torque is being
balanced by the friction between the lid and the jar.
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2.1.1 The Axis of Rotation

When an object is rotating, it is moving. This we can agree upon. But that leads to a
question that doesn’t seem to have an answer: “When an object rotates, in which direction
is it moving?”

When an object rotates each atom in the object moves around on a circle. The pieces at
the edge move around larger circles than the pieces near the center. The pieces right at the
center of the rotation do not move anywhere; their circles are of zero radius.

Each of these circles defines a plane. If we compare any two different pieces in the object
their circles are either in the same plane, or are in planes that are parallel to each other.
(In the context of this course these planes will be parallel to the xy-plane.) One of the key
geometric properties of a plane is that it is defined by a direction that is perpendicular to
the plane. Perpendicular to the xy-plane is the z-axis. Each of the circles are centered
around this common axis. When the object is rotating in the xy-plane the z-axis is the axis
of rotation.

x

y
z

In the cases of machinery, devices, tools or other manufactured objects, the axis of rota-
tion is at a pivot or an axle. A door rotates about its hinges (the pivot). A door knob rotates
about a shaft (an axle). In cases involving the human body the axis of rotation will usually
correspond to a skeletal articulation (a joint). The part of the object that corresponds to the
axis of rotation will, generically, be referred to as the pivot.

In each of these cases there is some form of connection or constraint that stops the ro-
tating object from becoming separated from the pivot. A bolt stops the door from popping
off its hinge; ligaments keep the upper and lower halves of the arm together. This (almost
always) means that there will be forces acting on the object at the pivot. These forces are
referred to as the forces of constraint at the pivot.

In the biomechanical context, the forces of constraint at a joint are produced by the forces
of contact between the cartilaginous surfaces of the bones on either side of the joint, and by
the tension in the ligaments holding the bones against each other. These forces are usually
augmented by tension in the surrounding muscles.

GOAL :

One of the primary goals of this course is to prepare you for thinking about
the mechanics of the human body in this way.
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All that being said, we must recognize that the axis of rotation does not always corre-
spond to a mechanical constraint. Think about tipping over chair, or doing somersaults. The
object is rotating, but there is no hinge or axle. There is no piece of material holding the
object to the axis of rotation. But there still is an axis of rotation. So, just for consistency,
even in these cases where there is no mechanical constraint at the axis of rotation, we will
still refer to the position of the axis of rotation as the “pivot”.

2.1.2 The Strength of a Torque

There is an experiment that I need you to do right now. Go to a door that you would push to
open. Unlatch it so that it will open just with a push. Open it a little by pushing at the edge
near the door knob or handle. Then open it a little by pushing at a place near the edge with
the hinges. Repeat this using not the palm of your hand, but just one or two fingers so that
you are more aware of the amount of force you need to apply.

A door, slightly open. . .

Opening a door by pushing closer
to the handle (further from the
hinge) requires less effort.

Opening a door by pushing closer
to the hinge (further from the
handle) requires more effort.

Do you feel how much more difficult it is to open the door when you push closer to the
pivot? The rotation of the door is the same, but the effort you required depended upon the
position on the object of your push. If the distance to the pivot was smaller, then the force
you had to apply was larger.

Experiment : Torque as force & position

Stop reading. Pause here and do the little experiment above. Do not read further
until you have understood this idea. If it does not make sense, then take notes on any
questions that thinking about this raises for you. Bring these questions to class!

Determining the quantitative value of a torque’s magnitude is the topic of section 2.2.
For now I want you to try to hold onto this experience as a qualitative guide to your thinking
about torque.

2.1.3 The Direction of Torque

If you were studying to become an engineer we would be learning about how torque is ac-
tually a vector. This is true because the axis of rotation of an object could be along any
direction; north, south, left, right, on an angle, et cetera. The vector of a force points in the
direction that the object would accelerate if it were the only force acting on the object. In
a similar way, the vector of a torque points along the axis of rotation that the object
would turn about if it were the only torque acting on the object.
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In this course we will choose to limit ourselves to cases where the rotation is happening
in the xy-plane. This puts the axis of rotation on the z-axis. It also keeps the forces in the xy-
plane so that our analysis of forces will follow the methods we developed in chapter 1. This
also means that the torque vector will have only one non-zero component: its z-component.

The sign of the torque’s z-component is not the sign of the component of the force that
is producing the torque. The sign of a torque’s z-component is the sign of the rotation that
it would produce (about the z-axis) if it were the only torque acting on the object. The
usual definition for a positive angle in the xy-plane (measuring counter-clockwise from the
+x-axis) defines the sense of positive rotation.

x

y

positive

x

y

negative

In the diagram below are some examples for you to think about. Think about the sign of
the components of the force that is being applied. And then think about how, geometrically,
the resulting rotation relates to the geometry of where the force is being applied. Notice
how “the sign” of the force component is, by itself, insufficient to determine the sign of the
resulting torque. In section 2.2 we will be developing quantitative methods for determining
the sign of the torque from the geometry.

Example 2.1 : Sign of torque in relation to applied force

Below we show some examples of how the sign of the resulting torque relates to the
applied force. Note how the rotation that applied force will produce is determined by
its relation to the pivot about which the object can turn. (Do you see how each of these
results are obtained?)

pivot

positive

pivot

negative

pivot

positive

pivot

negative

pivot

positive

From now on, when we have to include torque in our analyses, our coordinate system
will be x, y and z. The problem is we can’t draw in three dimensions, we’re stuck in the two
dimensions of our page (or screen). So how will we draw our coordinates?

In this course we will choose to limit ourselves to cases where the rotation is happening
in the xy-plane. This puts the axis of rotation on the z-axis. With the xy-plane in the page
(or screen), the z-axis points outwards at us. Rotation about this axis will either be counter-
clockwise (which we consider positive) or clockwise (which we consider negative). The sense
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of positive rotation is, from now on, part of our coordinate definition. In this specific context
we will represent the z-axis by noting the orientation of positive rotation in the xy-plane.
Our axes will look like this:

x

y +

The arrow pointed towards the right shows the direction of the +x-axis. The arrow pointed
towards the top of the page shows the direction of the +y-axis. The curved arrow surround-
ing the plus-sign denotes the sense of positive orientation or rotation. A torque that would
cause that rotation will have a positive z-component. A torque that would cause rotation in
the other orientation will have a negative z-component.

2.1.4 The Symbol for Torque: τ

In the sections that follow we will be finding the quantitative expressions for the magnitude
and direction of torque. In those equations and formulas we do not want to have to write
the full word “torque” over and over again. We want a simple symbol.

The symbol for torque is the Greek letter “tau”:

τ= torque (2.1)

If you want to write the letter τ start with the letter t and just chop the top off. Compare
them side by side: tτ.

Torque is a vector τ⃗, but our choices of system will, in this course, always have the
axis of rotation on the z-axis. So the only non-zero component of the torque will be the z-
component: τz. Please be very careful to not confuse the magnitude of the torque τ (which
is strictly non-negative) with the z-component of the torque τz (whose sign matters). (Refer
back to the sub-section on vector notation in section 0.3 to clarify the difference between
these quantities.)

2.2 The Geometry of Torque

In the example at the opening of this chapter the book would fall off our hand if we tried to
support it at the edge. The aspect of that example that is important for us to notice is that
as gravity pulls the book off our hand it rotates. The further our hand is from the center of
the book the faster it will rotate. The force acting at the center of the book is gravity. So the
factor that controls how fast the book will turn as it falls off our hand is the distance from
where it will turn (around our hand) to the place where the force is acting. The purpose of
this section is to quantify this simple definition of torque.

This first step will be to argue qualitatively for the relation between force, position and
rotation. In the subsections that follow the relation will be refined, mathematically.
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2.2.1 Method: Line of Action & Moment Arm

As a simple mechanical example, let’s think about a wheel on an axle, as pictured here:

Looking down onto this wheel from above we can ask which of the three possible ways of
pushing on the wheel would make its rotation change fastest:

No torque at all. A little torque. . . Maximum torque!

In these diagrams: the red arrow is the force that is being applied to the wheel; the dashed
orange line is the line that the force points along, called the line of action; the dashed blue
line is the shortest distance from the axis of rotation to the line of action, called the moment
arm. Experience (and experiment!) teaches us that the alternative where the moment arm
is greatest produces the fastest change in rotation.

For these reasons we define the magnitude of the torque exerted by a force to be

τ= F d (2.2)

The quantity F is the magnitude of the applied force. The quantity d is the size of the
moment arm (the distance from the axis of rotation to the line of action). This product Fd
is the magnitude of the torque.

pivot

F⃗d

There are two important facts about the definition of equation 2.2 that we must note and
remember when we use it:

Torque : Defined relative to axis

Recall how force has no meaning unless the object it acts upon is specified. Similarly,
torque has no meaning unless the axis of rotation (pivot) about which it is acting is
specified.
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Torque : Units

This definition of torque – a force times a distance – means that torque has units of
newtons times metres, written as “N·m”. If you remember studying energy and work
in high school, then you may think that this should be a joule, written “J”. Despite this
similarity, the unit of torque is not the joule. Why this is true will be explained when,
in this course, we study energy in chapter 4. When writing a value for a torque, write
the units as N·m.

The vector of torque τ⃗ is along the axis of rotation. For us, with the line of action in the
xy-plane, that is the z-axis. Thus the only non-zero component of torque is the z-component:
τz. Remember that the sign of this component tells us whether the torque would make the
object turn clockwise (τz < 0) or counter-clockwise (τz > 0). So when we write this formula

τz =±F d (2.3)

we must determine the sign of the torque (which of the signs “±” we must use).

pivot

Force applied to object

pivot

Line of action of force
(Note how the tiny arrows on the
line of action match the orienta-
tion of the direction of the applied
force.)

pivot

Positive

Orientation of torque.
(Note how the tiny arrows
around the pivot match the
orientation of those on the line of
action.)

In sub-section 2.1.3 we saw examples of the relation between the direction of the applied
force, the location on the object of the applied force, and the sign of the resulting torque.
When the line of action is known, if it is labeled as shown (with little arrows indicating the
direction of the applied force), the direction of torque is found by looking at how the line of
action passes the pivot.

Note carefully that each element that contributes to the determination of torque is rel-
ative to the pivot. For this reason we must remember that the pivot must be specified
for a torque to have meaning. Conversely, a torque only has meaning relative to a pivot.
The magnitude of a torque measures the strength of a force’s ability to change an object’s
rotation. But that magnitude, and the rotation that might follow, are relative to a pivot (or
axis of rotation). Return to the experiment with the door in subsection 2.1.2 to appreciate
this.

Example 2.2 : Supporting a book

As shown in the diagram below, you are trying to hold up a heavy, hard-cover textbook.
It has a mass of 3.00 kg, and is 26.0 cm wide. You are supporting it at its edge. What is
the magnitude of the torque exerted by it weight about your hand?
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The magnitude of the torque applied by gravity will be the magnitude of the force of
gravity, times the moment arm from where the textbook is being supported by your
hand to the line of action of gravity. Here’s a sketch of the geometry:

F⃗G
d

pivot

When considering torque one of the most important steps is to identify the pivot; to
explicitly state the location of the axis of rotation about which the torque is acting. In
this example the axis about which the textbook will rotate before falling is at the place
where your hand is trying to support it; so the “pivot” is at the hand. Gravity acts at
the center of the book, so the moment arm is half the width of the book.

The magnitude of the applied torque is

τ= F d = (mg)d = (3.00kg×9.81N/kg)× (1
2 ×0.260m)= 3.83N·m (2.4)

Note carefully that:

• we are given the mass (in kilograms) of the book, but we need to find the force (in
newtons) exerted on the mass of the book, so must multiply by g

• the units of torque are N·m, so we must convert the width of the book to an
expression in metres

Explicitly writing the units of the quantities you are about to use in a calculation will
inform you of what (if any) conversions need to be done. Always include your units!

2.2.2 Method: Perpendicular Component

When a force is applied to an object with a pivot we can think of the force as having two
components. Components are measured relative to an axis, and in the case of torque the
axis the direction defined by the line that connects the pivot to the place on the object where
the force is acting.

pivot
F∥

F⊥ F⃗

r⃗ θ

One component is the part that points either directly at or directly away from the pivot,
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along the direction that extends from the pivot radially out to where the force is acting on
the object. That component does not create a torque since it is either pulling or pushing
the object directly away from or towards the pivot. The other component is perpendicular to
the radial direction. This component creates a torque since it pushes the object around the
pivot.

The radial vector r⃗ points from the pivot to the place on the object where the force is
acting. The portion of the force F∥ that is parallel to r⃗ does not contribute a torque since
it is either pulling or pushing directly on the pivot. The portion of the force F⊥ that is
perpendicular to r⃗ is the portion that affects the rotation of the object.

In biomechanics the portion F∥ of the force parallel to the limb will either be pushing
on the limb towards the joint (“compression”) or pulling on the limb away from the joint
(“distraction”). The perpendicular component F⊥ effects the rotation of the limb about the
pivot, but the parallel component F∥ exerts a force on the pivot. This is a critical aspect to be
aware of since forces acting on the joint could aggravate existing damage or cause injury.

2.2.3 Result: Magnitude & Sign of Torque

The torque produced by a force F⃗ is determined by where on the object the force acts relative
to the axis of rotation (pivot). The radial vector r⃗ is from the pivot to the point on the object
where the force F⃗ is acting. When the angle θ between the axis defined by r⃗ and the line of
action of the applied force F⃗ is known, the component

F⊥ = F sinθ (2.5)

(the part of F⃗ that is perpendicular to r⃗) is the portion of the force that contributes a torque.
In this F is the magnitude (a non-negative quantity) of the applied force, and θ is the angle
measured conventionally with counter-clockwise being positive and clockwise being nega-
tive. The component F⊥ is a number whose sign matters.

Since F⊥ acts perpendicular to r⃗ the magnitude r is the value of the moment arm for the
torque that F⊥ exerts. Thus τz = F⊥ r, or

τz = F r sinθ (2.6)

As long as the angle θ is measured conventionally (with counter-clockwise being positive
and clockwise being negative) then this equation will always have the correct sign of torque.

Toque of a Push versus Torque of a Pull

Any push or a pull of equal magnitude applied along the same line of action will produce the
same torque.

Example 2.3 : Toque of a Push versus Torque of a Pull

Using the formula τz = Fr sinθ calculate the torque exerted on each object in the dia-
gram by the force shown about the given pivot. Compare their values, and explain their
interrelationship, if any.
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Scenario (a)

pivot

Scenario (b)

pivot

The objects are identical cubes of edge-length 25.6 cm. The forces are of equal magni-
tude (both 74.0 N), and point in same direction (vertically upwards), but are applied at
different positions on the objects (as shown in the diagram).

We are instructed to use the formula τz = Fr sinθ to calculate the torque. In both cases
we know that the magnitude of the applied force is F = 74.0N. It thus remains for us,
in each case, to find the distance r from the pivot to place where the force is applied,
and the angle between that direction and the line of action. We are comparing a vertical
push applied at bottom right corner against a vertical pull applied at top right corner.

But, before we calculate anything, we can note that the distance to the line of action
is same in both scenarios. With the forces having the same magnitude F the moment
arms d being the same, we can expect that the torques will have the same magnitude.

Scenario (a)

pivot

25.6 cm

F⃗

r⃗

+90◦

Scenario (b)

pivot

25.6 cm

25
.6

cm

36
.2

cm

F⃗

r⃗

+45◦

In scenario (a) the distance from the pivot to the bottom right corner is r = 25.6cm=
0.256m. The angle between the direction of r⃗ and the direction of the force along the
line of action is +90◦. This angle is positive because we must turn counter-clockwise to
go from the direction of r⃗ towards the direction of F⃗. Thus, with r expressed in metres,
we obtain

τ(a),z = Fr sinθ = (74.0N)(0.256m) sin(+90◦)=+18.9N·m (2.7)

where the positive signifies a counter-clockwise torque.

In scenario (b) the distance from the pivot to the top corner is larger by a factor ofp
2 because r =

√
(25.6cm)2 + (25.6cm)2 = 36.2cm = 0.362m. But the angle θ is smaller

(45◦ instead of 90◦), so sinθ is smaller ( 1p
2

instead of 1), and rsinθ has the same value
as in the previous scenario:

τ(b),z = Fr sinθ = (74.0N)(0.362m) sin(+45◦)=+18.9N·m (2.8)
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Beyond having the same magnitude, as expected, we find that the two torques have
the same sign as well. This is to be expected since the line of action is the same in both
scenarios and the forces have the same orientation on the line of action.

Equivalence of Methods

The magnitude of torque was defined in terms of the moment arm d. Physically it is the
component F⊥ of the applied force that exerts torque about the pivot. These two approaches
must give the same predicted value of torque. How does that happen? Consider the diagram
below.

pivot

F⃗

d

r⃗

pivot

F⊥ F⃗

d

r⃗ θ

In the diagram above the two shaded triangles are similar triangles, with the ratios d/r
and F⊥/F both equal to sinθ in magnitude. Mathematically

τz = F r sinθ (2.9)
= F (r sinθ)=±F d (2.10)
= (F sinθ) r = F⊥ r (2.11)

where the choice of ± is made to match the sign of sinθ.

These two equivalent expressions have different utility. In cases when we are given or
can see directly the value of the moment arm the expression τ = ±Fd is the quickest and
easiest to use to find the torque.

However, in most biomechanical contexts the value of the moment arm will not be ap-
parent, and will most likely not correspond to a physical distance on the object. Finding the
perpendicular component of the force (F⊥) will be both necessary and more meaningful.

2.2.4 Advanced Method: Cartesian Components

If you have the components of the force and of the position vector, there is a way to calculate
the force without having to find the angle or the moment arm. This method should be
considered as advanced and is usually not necessary for use in the context of this course.
But it does make explicit the way in which the sign of the torque is determined by the signs
of the components of the force producing the torque. You may skip this sub-section on your
first reading – unless you are curious. . .
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x

y
F⃗

r⃗

τz

= x

y
Fy

rx

+rxFy

+ x

y

Fxr y

−r yFx

A force F⃗ acting on an object at position r⃗ relative to the pivot exerts a torque. The
vertical part of the force (the y-component) acts along a line of action that is a distance rx
from the pivot. The horizontal part of the force (the x-component) acts along a line of action
that is a distance r y from the pivot. The sign of the torque that each of these contributes is
shown in the diagram above.

The sum of torques is itself a torque. (This is explored in the next section.) Combining
the contributions described in the previous paragraph we find that the component of torque
around the z-axis can be written in terms of the components of the applied force and the
components of the position vector:

τz =+rx Fy − ry Fx (2.12)

If you already have, or were given, the components of the applied force and its position,
then this expression gives you the torque without requiring you to determine any angles or
rotational orientations. You can try using this expression by applying it to the examples in
sub-section 2.1.3.

2.3 Sum of Torques & Equilibrium

The picture at the opening of this chapter planted the idea: torques contribute to equilib-
rium. The development outlined here parallels what we did in section 1.3 with forces.

2.3.1 Summing Torques

Torque is a vector, and it follows all the rules of vector summation, as usual. In this course,
however, we are limiting ourselves to cases where the axis of rotation is the z-axis. Thus
we will only ever have the z-components of the torques (τz) to worry about. When we sum
torques, we only need sum the z-components. The x and y components of each torque will
all actually be zero, with no need to sum them. To get the correct sign and magnitude for
each contribution to τz we need only follow the methods of section 2.2 (“The Geometry of
Torque”) to use equation 2.6 (τz = Fr sinθ) properly.

Torques add as vectors, but there is one critical constraint that must be obeyed for the
sum to be meaningful:

CRITICAL : Each torque relative to the same pivot

Torque measures the strength of a force’s ability to change an object’s rotation. To
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compare or combine (add) torques each torque must be measured or calculated relative
to the same pivot.

This is necessary since torque is the measure of a force’s ability to rotate about a specific
axis of rotation. That measure is defined relative to that choice of axis. Consequently it
makes no sense to compare torques due to different force about different axes. (This would
be similar to comparing forces acting on different objects.)

2.3.2 Equilibrium

Newton’s 1st Law for forces states that an object is in static equilibrium when the forces
acting on it sum to zero (

∑
F⃗ = 0⃗ N). There is a corresponding Newton’s 1st Law for torque:

If an object is in static equilibrium, then the torques acting on it sum to zero (
∑
τ⃗= 0⃗ N·m).

In this course (where the axis of rotation is only ever along the z-axis) the equations
that, together, are the statement of Newton’s 1st Law are∑

Fx = 0N (2.13)∑
Fy = 0N (2.14)∑
τz = 0N·m (2.15)

The sum of forces along the x-axis summing to zero means that the object doesn’t move left
or right. The sum of forces along the y-axis summing to zero means that the object doesn’t
move up or down. The sum of torques about the z-axis summing to zero means that the
object doesn’t rotate (neither clockwise nor counter-clockwise).

2.3.3 The Choice of Pivot

If an object is in static equilibrium, then it is not rotating about the pivot. But neither is
it rotating about any other axis; the object is not rotating at all. This fact leads to a very
powerful statement:

Important : Equilibrium independent of pivot

If an object is in static equilibrium
then the sum of torques is zero

about any axis.

Writing out the sum of torques equalling to zero generates an equation that we can use to
solve for unknown forces that are acting on the object. The fact above allows us to choose any
axis, set the sum of torques about that axis to zero, and generate a new equation. When we
are writing the equations to be solved the “pivot” does not need to be an actual mechanical
pivot! Since the forces at the actual mechanical pivot do not exert a torque about that pivot,
this freedom can help think about and solve for those forces. Examples at the end of this
chapter will demonstrate how.
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2.3.4 Where does Gravity Act?

Every atom in the universe is attracted to every other atom in the universe by gravity. So
when we draw a picture of earth’s gravity acting on an object it should really be like the
drawing second from the left:

Here is an object near the Earth. Here are the contributions of gravity
acting on each of the pieces of the ob-
ject. Gravity does not act at one point,
it acts on all points.

If the “pivot”is placed anywhere on this
dashed line the torques from forces to
the left will be balanced by torques
from forces on right, and the sum of
torques will be zero about that pivot.

F⃗G

This single force is equal to the sum of
all the contributions from gravity act-
ing on all pieces of the object. And
like the sum of all the torques from the
all of the pieces, this force exerts zero
torque about its line of action.

If take the object pictured above and orient it different ways, the lines about which the
torques sum to zero will all intersect at a common point. About this point, the center of
mass of object, the torque exerted by gravity is zero, regardless of its orientation.

F⃗G

When analyzing the affect of the force exerted by gravity on the equilibrium (or motion!)
of an object it is the sum of all the gravitational forces on its pieces that matters; this sum is
modelled as a single force that we call F⃗G. When analyzing the affect of the torque exerted
by gravity on the equilibrium (or motion!) of an object it is the sum of all the gravitational
torques on its pieces that matters; this sum is modelled as a single torque due to a single
force (F⃗G) that acts at the center of mass.

The Torque exerted by Gravity

If the pivot is placed at the center of mass, the torque on the object due to gravity is zero. If
the pivot is placed anywhere else on the object, the torque due to gravity might not be zero.
The pictures at the opening of the chapter, and example 2.2.1, present this idea.

It is important to remember that, regardless of where the pivot is located, gravity will
exert a force on the object. When we are determining the sum of forces on the object, gravity
will always contribute. But when determining the sum of torques the relation between the
position of the pivot and the center of mass will determine the amount of torque gravity
contributes. If the line of action of the force of gravity passes through the pivot, then its
contribution to torque will be zero.
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2.3.5 Where does the Normal act?

Picture of rectangular object at rest on incline. Picture of the distribution of surface forces,
with normal and friction being pictured separately. If the object is stable, then it will not be
rotating about any axis. Choose the lower corner of the object. All the contributions from
friction have lines of action passing through the pivot, and thus do not exert a torque!

We will consider what happens if the surface is gradually tilted. At each step we take
the center of mass to be the pivot.

When the surface is horizontal the normal is at the center of the object, pointed directly
at the center of mass. The normal and gravity directly oppose each other, sharing a common
line of action, and the torques of these two forces would sum to zero about any axis. With
the “pivot” at the center of mass the torque of each of these forces is zero.

As the surface is inclined friction becomes non-zero if the object remains in static equilib-
rium. The contribution to torque from friction has a line of action along the bottom surface,
with a moment-arm whose distance does not vary with the degree of incline. If the normal
were to continue to act at the center of the object its contribution to torque would remain
zero. Those contributions (gravity and normal both zero, but friction non-zero) can not sum
to zero. So we conclude that the normal can not remain at the center of the object if the ob-
ject is to remain stable. The line of action of the normal must also move away from passing
through the center of mass.

When the surface is inclined, if the distribution of normal forces is uniform, then the
sum of torques can not be zero. Thus the distribution of normal forces must be non-uniform.
As we will see in the examples at the end of the chapter, the effective (single force at a
point) normal must be located under the center of mass. This means that the distribution of
pressure under the object will tend to be greatest nearest the end above which the center of
mass is located.

2.3.6 Forces at the Pivot

When a door is wide open and at rest, the hinges must support the weight of the door. If the
hinges are too weak (or if too much additional force is applied to the door), then the door can
rip out of the wall. When you pick up a very heavy object the shape of the two bones that
contact in a joint work to prevent them from separating. But if too great a force is exerted
on the joint, the bones can dislocate.

The point to those examples is to make you see that there are forces acting at the pivot
to keep the pieces on either side connected to each other even as they rotate around each
other. By definition the forces acting at the pivot are zero distance from the pivot, and so
can not exert a torque about the pivot. But there must be forces at the pivot to keep the
object connected to it.

There is one small detail that, in real-world applications, can make the physics of the
pivot contribute: when there is rotational friction in the pivot. If you can picture the sur-
faces of the joint, bearing, or hinge (whatever the pivot is) imagine the surfaces of contact
rotating past each other. If there is friction where these surfaces meet, then there will be a
torque exerted by the pivot! Usually (typically!) even when there is friction present in the
pivot, it has a very small moment arm (the distance d) and the resulting torque is small in
magnitude.
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2.4 The Process

What we do here is a refinement of the Process introduced in section 1.4. Go back and
quickly review that section before going any further!

The purpose of the Process here, when torques are considered, is essentially the same
as previously: To provide a systematic method for solving for unknown forces acting on
objects in equilibrium. The one difference now is that, with torque relating force and position
together through equilibrium, it becomes possible to also solve for where a force must act.

The Process

0. Identify the Object!

1. Identify the forces acting on the Object.

2. Draw the Free-Body Diagram, clearly identifying the pivot.

3. Separately, for each force acting on the Object:

• draw the object and the coordinates
• draw the force, placing it on the object where it is acting
• draw the position vector r⃗ from the pivot to where the force is acting
• determine the components of the force, and the contribution to torque.

4. Use Newton’s 1st Law to write the equations to be solved.

5. Solve the equations for the unknown quantities.

2.4.0 Identify the Object!

Write it down: what is the object? Be very clear and specific about what is the Object. Only
after you have specified the Object can you expect a clear answer to questions like “what is
the force?”

With the ability to analyze rotation using torque we will now be able to consider more
realistic problems of biomechanics that involve the human body. As we saw in the discussion
about Newton’s 3rd Law (1.3.1) when a person is the “cause” of the forces in the system it
can become very easy to confuse effect and cause. Since our goal will be to determine what
is happening to the person’s body it is critical to not confuse that with what is being done
by the person’s body. Clearly identifying the Object will reduce the chance of confusing the
two.

2.4.1 Identify the Forces

Please remember and try to appreciate the importance of this step: This is when you think
physically about the situation. Take your time with this step and, using your choice from
Step 0, be very clear about what force is associated with what interaction. Be careful with
cause and effect, and use Newton’s 3rd Law to reason about the direction of the force acting
on the Object.

This is especially important in the biomechanical context, since it is very easy to confuse
the action performed by a person (the force they exert on something else) with the reaction
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on them (the force that is acting on them). As we will typically be concerned with the forces
acting inside the body, we will need to forces acting on the person, not they forces they are
exerting on other things. Be very careful with this Step.

2.4.2 Draw the Free-Body Diagram

When considering torque, the Object can not be idealized as a point. Its geometry – specifi-
cally where on the object each force acts – is crucial. Draw a cartoon of the object, an outline
showing its shape, and then place each force on the object where it is acting. Unlike what
we did in section 1.4 the location of the application of the force on the Object is now critical.

Drawing a Free-Body Diagram (FBD)

2A. Draw a cartoon of the Object, with each of the forces identified in Step 1 drawn on
the object where they act.

2B. Draw the “conventional FBD” with the forces each starting on a dot (which repre-
sents the object).

2C. Draw the sum of forces, in counter-clockwise order around the forces in the dia-
gram from Step 2B (usually starting with gravity).

2D. Think Physically to correct the sums, if necessary: Adjust magnitudes based on
the forces, and on the torques, summing to zero; Find friction; etc. Iterate between
2C and 2D until the sum is correct.

2E. Explain physically what the correct sums of forces and torques mean for the Ob-
ject’s static stability or trajectory.

As was the case in chapter 1 for forces, the “artistic quality” of the diagram is irrelevant.
What matters is how the diagram can help you reason about the geometry of the forces and
torques acting on the object.

It can not be over-emphasized that Step 2D, where we reason physically about the forces
and torques, is where you should put the majority of your effort. As was the case in chapter 1
this is where adjustments of the magnitudes of the forces can be determined qualitatively
by refining the sum of forces. But now we also have the additional information that can be
determined by reasoning about how the torques sum to zero.

With the forces drawn on the object where they act we can estimate the relative amount
of torque exerted by each force. This will often let us reason about the relative magnitudes
of the forces. The rule of thumb “larger distance, smaller force, or smaller distance, larger
force” can often lead us to correct conclusions about which the forces must be larger and
which must be smaller. (This kind of reasoning feeds back into the iteration of the sum of
forces being zero.)

2.4.3 Components

For each force acting on the object, make a separate drawing of the object with the picot
clearly identified, and draw the force where it acts on the object. (Size is key, especially for
finding angles and distances in determining contributions to torque.)
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Find the component of forces, as before. But now take the additional step to find the
contribution to torque from each force. The individual drawings of the forces acting on the
object will help in correctly determine the distances and angles needed to find the torque.

Remember that each torque is relative to the pivot. Be careful with the geometry! Be
clear about which method you are using to calculate the torque: line of action and moment
arm (±Fd)?, or perpendicular component (Frsinθ)? Have you been give, or can you easily
identify, the moment arm? Where is the angle measured from? The size of your drawing
will determine how easy it is to preform the correct constructions needed to determine the
geometry.

2.4.4 Use Newton’s 1st Law

When an object is in static equilibrium, it is neither moving nor rotating. For us, the state-
ment of Newton’s 1st Law has three equations:∑

Fx = 0N (2.16)∑
Fy = 0N (2.17)∑
τz = 0N·m (2.18)

The equation for the sum of x-components of the forces says that the object moving neither
left nor right. The equation for the sum of y-components of the forces says that the object
moving neither up nor down. The equation for the sum of z-components of the torques says
that the object not rotating about the chosen axis of rotation (the “pivot”). Together these
are the mathematical statements saying that the object is in static equilibrium – it is not
moving, and it does not start moving.

2.4.5 Solve for the Unknowns

Three equations allows for the determination of three unknowns. As we will see in the
examples (and explore in the exercises) the work-flow will typically be like this:

• Use the sum of torques to solve for one unknown (typically an unknown magnitude of
force, or an unknown distance to place where a force is being exerted);

• Then use the sum of forces to solve for the two components of the unknown force acting
at the pivot.

Since the force at the pivot does not contribute a torque, the components (or magnitude)
of that unknown force does not appear in the sum of torques equation. This places the
unknowns into separate equations, and the algebra is usually quite simple. (Typically it is
the geometry of determining the torques that is much more difficult than the solving for the
unknowns.)

The one aspect to be very careful of is the units of the various quantities that you are
substituting into the equations before solving. It is recommended that you explicitly and
carefully fully substitute and write-out all the quantities with their units in the equations
before you reach for your calculator. This is the place to notice if the units of your “result”
actually match what you are calculating. For example, if you forgot to multiply a mass
by “g”, then you might find that what you know should be a distance instead has units of
N·m/kg (which is non-sense). That’s when you go back and check your previous steps.
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2.5 Examples

These examples will fall into three categories.

The first are those where the Object is not a person. These are categorized as being
mechanical. They will generally be geometrically simple solid objects.

The second and third categories are those in which the Object is a person. The second
category are those where the person as a whole is considered as the Object. In those cases
the feature to study carefully is the relation between what the person is doing (their action)
and what is being done to them (the reaction).

The third category are those in which the Object is a portion of a person’s anatomy. In
this category the goal will be to determine the forces that are acting internally, typically the
tension in a muscle, and/or the forces of contact and attachment between skeletal segments.
These examples will build upon what we learn in the second category: Starting from what
the person is doing, we can determine the reaction force(s) on them, and then find the forces
that consequently must be acting inside the person’s body. The study of these situations is
the goal of the biomechanics segment of this course.

2.5.1 Mechanical examples

Example 2.4 : Supporting a Stage with a Person on it

A performer is standing on a stage. The stage is supported at each end by some metal
brackets. (The shape of the supports is not important.) The stage itself has a mass of
mstage = 1200 kg, and its center of mass is at its geometric center. The stage is 11.00 m
wide and each support is 0.50 m from the end. The performer is standing 1.50 m from
the right end of the stage, and their mass is mperson = 65.00 kg. Find the forces exerted
on the stage by each of the supports.

We are asked to find two forces, the forces exerted by the supports. So we will need
to answer with two force vectors. Since the person is standing closer to the support on
the right we expect that the support on the right will have to exert a greater force than
the support at the other end.

Step 0: Since we are asked to find the forces exerted on the stage, the stage is the
object.

Step 1: The stage has a large mass, and gravity will be pulling downwards on it. Even
if the performer was not there, the supports would have to support against that weight.
Each support will have to exert an upwards force on the stage to support it.

The person is touching the stage, so they exert a normal on the stage. The force that
the person exerts is not gravity! Think for a moment of the person as the object: Gravity
pulls down on them, and the stage exerts an upwards normal. By Newton’s 3rd Law the
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person exerts the opposite of this normal on the stage. This is the simplest case, where
the normal happens to have a magnitude equal to mperson g, but the normal is not itself
a gravitational force.

With the stage as the object, with this normal force being exerted on it from above,
the supports will have to provide greater forces than just supporting the stage’s own
weight.

Step 2: Below are the FBD and the check of sum of forces:

F⃗G
F⃗L F⃗R

n⃗

F⃗G

n⃗ F⃗L

F⃗R

This check of the sum of the forces is only qualitative because the force of gravity is, in
reality, about twenty times bigger than the normal exerted by the person.

We also expect that the force of support on the right will have to be slightly greater
than that on the left because the force exerted by the person is closer to the right.

Step 3: For each force acting on the object we now need to find its components and the
contribution it makes to the torque. In the solution presented here this work seems to
take a lot of space. Do not be alarmed! This is only because I am explaining each step in
great detail that it appears long. When you get to doing problems of this type you will
find how compactly these steps can be done.

x

y +

pi
vo

t

F⃗G

d

11.00m

5.50m0.50m

The components of the gravitational force are FG,x = 0 N and
FG,y =−mstage g =−(1200 kg)(9.81 N/kg)=−11772 N. This force
acts at the center of the stage, which is 1

2 × 11.00 m = 5.50 m
from the left end. The pivot is 0.50 m from the left end. So the
distance from the pivot to the line of action is 5.00 m.
This force, by itself, would make the object begin to rotate
clockwise (which is negative, relative to our choice of coordi-
nates). Thus the contribution to torque from this force is τG,z =
−(11772 N)(5.00 m)=−58860 N·m.

x

y +

pi
vo

t

n⃗

d

11.00m

1.50m0.50m

The components of the normal that the person exerts on the ob-
ject are nx = 0 N and ny =−mperson g =−(65.00 kg)(9.81 N/kg) =
−637.65 N. This force acts 1.50 m from the from the right end
of the object. The pivot is 0.50 m from the left end. Since the
object (the stage) is 11.00 m wide the distance from the pivot to
the line of action is 9.00 m.
This force, by itself, would also make the object begin to rotate
clockwise. Thus the contribution to torque from this force is
τn,z =−(637.65 N)(9.00 m)=−5738.85 N·m.
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x

y +

pi
vo

t
F⃗R

d

11.00m

0.50m0.50m

The components of the force of the support on the right are
FR,x = 0N and FR,y =+FR. This force acts 0.50 m from the from
the right end of the object. The pivot is 0.50 m from the left end.
Since the object (the stage) is 11.00 m wide the distance from
the pivot to the line of action is 10.00 m.
This force, by itself, would also make the object begin to rotate
counter-clockwise. Thus the contribution to torque from this
force is τR,z =+FR ×10.00m.

Lastly, the force of support at the left end has components FL,x = 0N and FR,y = +FR,
and contributes no torque (τL,z = 0N·m) because it acts at the pivot.

Step 4: The Newton’s 1st Law for the forces applied is

F⃗G + n⃗+ F⃗L + F⃗R = 0⃗ N (2.19)

The x-components of all the forces are zero. Consequently the x-component of the sum
contains no information for us. The y-component equation is

FG,y +ny +FL,y +FR,y = 0 N (2.20)
−11772 N−637.65 N+FL +FR = 0 N (2.21)

If we pause here we can see why we need to consider torques. The sum of forces, in this
situation, only provides one equation for two unknowns. The sum of forces alone is not
sufficient to determine the conditions for static equilibrium. The sum of torques being
zero provides an addition equation that produces a solution.

The Newton’s 1st Law for the torques applied is

τG,z +τn,z +τL,z +τR,z = 0 N·m (2.22)
−58860 N·m−5738.85 N·m+0 N·m+FR ×10.00 m= 0 N·m (2.23)

Now we have two equations (the x-component of the sum of forces, and the z-component
of the sum of torques) for the two unknowns: the magnitudes of the forces acting at the
supports.

Step 5: The equation for torque has only one unknown in it, FR. Solving that equation
gives us

FR = 58860 N·m+5738.85 N·m
10.00 m

=+6460 N (2.24)

This we then substitute into the equation for the y-components of the forces:

0 N=−11772 N−637.65 N+FL +FR (2.25)
FL = (+11772+637.65−6460) N=+5950 N (2.26)

Both of these results are for the magnitudes of the forces. The fact that they are both
positive indicates that our choices of direction for each of the forces were correct.

Answer: The force exerted by the support on the right is 6 460 N upwards. The force
exerted by the support on the left is 5 950 N, upwards. These are the two force vectors
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were we asked to find. As expected, the support on the right is supporting more of the
performer’s weight and so is greater in magnitude than that exerted by the support on
the left.

Example 2.5 : Equilibrium Lab

bar

chain

pivot

A thick, flat metal bar is suspended as shown in the di-
agram: pivoted at one end, and supported at the other
by a horizontal chain. The chain is 76.5 cm long, and is
55.0 cm above the pivot.
The bar has several holes drilled through it. The distance
between the first (the pivot) and the one where the chain
is attached is 94.8 cm. The bar has mass 1.170 kg, and
its center of mass is 55.0 cm from the pivot.
What is the tension in the chain?

Step 0: The object is the metal bar.

Step 1: The metal bar is interacting with the Earth (gravity, vertically downwards),
the support (a contact force at the pivot), and the chain that is holding it in equilibrium
(tension, horizontally towards the left). If we are able to solve the problem using the
sum of torques about the pivot, the force at the pivot will be irrelevant since it does not
contribute a torque.

Step 2:

F⃗G

T⃗

F⃗P

With gravity pointing downwards and tension
pulling towards the left, the force of support at the
pivot must point up and towards the right.
It is difficult to judge exactly, but it looks like the mo-
ment arm of the tension is greater than the moment
arm of gravity, so the tension might be slightly less
than gravity.

Step 3: The components of the forces are easy to state, since gravity is vertical and the
tension is only horizontal. But finding their contributions to torque is a little trickier
since the contribution from gravity requires solving a problem of the geometry to find
either the moment arm, or the angle between F⃗G and its corresponding r⃗.

The components of the forces are

x

y

F⃗G

FG,x = 0N

FG,y =−(1.170kg)(9.81 N
kg )=−11.48N

x

y

T⃗

Tx =−T
Ty = 0N
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Both components (FP,x and FP,y) of the force of support at the pivot are unknown (al-
though we can anticipate that they will both have to be positive).

The force of support at the pivot applies no torque about the pivot. The geometry for
the two non-zero contributions to torque are shown below.

F⃗G
xG

r⃗G

pivot

τG,z =−FG xG
T⃗

yT
r⃗T

pivot

τT,z =+T yT

We have the moment arm yT for the tension, but we do not have the moment arm xG for
gravity.

We know all three sides of the right-triangle that has rT as its hypotenuse. The un-
known length xG that we need is one side of a right-triangle of which whose hypotenuse
(rG = 55.0cm) is the only value we have. To find xG we note that those two triangles are
similar; they have identical angles in their corners, as we can see in the diagram below.

pivot F⃗G

T⃗

For the larger (orange) triangle, the cosine of the angle in its top right corner equals the
ratio xT

/
rT. In the smaller (purple) triangle it has the same angle in its top right corner,

for which its cosine is the ratio xG
/

rG. Since the angles are the same, these ratios are
the same, and we can write

xG

rG
= xT

rT
(2.27)

xG = rG × xT

rT
= (55.0cm)

76.5cm
94.8cm

= 44.38cm (2.28)

We now have sufficient data to write the contributions to torque:

τG,z =−FG xG =−(11.48N)(0.4438m)=−5.094N·m (2.29)
τT,z =+T yT =+T ×0.550m (2.30)
τP,z = 0N·m (2.31)
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Step 4: If we write the sum of forces we would be able to solve for the force of support
at the pivot, but we were not asked for that. To solve for the tension in the chain we
need only consider the sum of torques being zero about the pivot:

τG,z +τT,z +τP,z = 0N·m (2.32)
(−5.094N·m)+ (+T ×0.550m)+ (0N·m)= 0N·m (2.33)

Step 5: Solving that equation for the unknown tension gives

(−5.09N·m)+ (+T ×0.550m)+ (0N·m)= 0N·m (2.34)
T =+5.094N·m/

0.550m= 9.26N (2.35)

Answer: The tension in the chain required to maintain static equilibrium is T = 9.26N
which, as was guessed, is slightly smaller than the magnitude of gravity.

Example 2.6 : Ladder against a wall

A person is standing on a ladder that is leaning against
a wall. The ladder is 4 m long. The angle between the
ground and the ladder is 57◦. The person has a weight of
700 N and is standing 1 m from the top end of the ladder.

Ignore the weight of the ladder (it’s a very light aluminum ladder). There is friction
between the ladder and the ground, but there is no friction between the ladder and the
wall. (This is made possible by small wheels at the top end of the ladder which allow
you to slide the end of the ladder up the wall when putting the ladder in place.)

Find: 1. The magnitude of the normal acting on the ladder at the wall; 2. The mag-
nitude of the normal acting on the ladder at the ground; 3. The magnitude and direction
of the friction acting on the ladder at the ground.

Step 0: In the statement of the problem we are asked to find the forces acting on the
ladder. This means that the ladder is our choice of Object.

Step 1: The interaction with the Earth is always present, but we are told to ignore
this force because it will be small. (We recall that have done this before in contexts like
pulleys, where a particular force is small in comparison to all other forces acting, and
that neglecting it will not change the results by a significant amount.)

The person standing on the ladder is exerting a force on the ladder. To understand
this contribution we can think about the action-reaction (Newton’s 3rd Law) interaction
between the person and the ladder. If, for just this moment, we consider the person as
the Object, then we find that gravity is pulling downwards and there is a normal from
the ladder acting upwards. With the upwards normal on the person as the “action”,
there is a downwards force on the ladder as the “reaction”. In the context of the problem,
with the ladder as the Object, it is this downwards force that we need to include.
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The ladder makes contact with the surface of the wall and the surface that is the
ground. There will be two normal forces, one at each surface. We are told explicitly that
there is no friction at the wall, and that we are to find the friction at the ground.

Step 2: The Free-Body Diagram for the ladder, and the check of sum of forces, is:

n⃗g

n⃗w

f⃗

F⃗

n⃗g

n⃗w

F⃗

f⃗
pivot

To get a qualitative estimate of the size of the forces acting on the ladder we need to
think about the sum of torques around the bottom end of the ladder. (Here we choose
that point as the “pivot”.) Specifically, where are the lines of action for the normal from
the wall and the force exerted by the person? (Diagram above on the far right.) The
distances from those lines to the pivot determine their relative magnitude: For these
torques to balance the force along the line that is further from the pivot must be smaller
than the force along the line that is closer to the pivot. Looking at the diagram we can
see this means that the normal from the wall must be smaller than the force applied by
the person. (We use this information to construct our check of the sum of forces.)

Lastly, the check of the sum of forces shows that the friction acting at the ground
must point towards the wall. This is because the only other force acting horizontally is
the normal from the wall, which acts towards the left.

Step 3: With the exception of the person’s weight, we know none of the magnitudes of
the forces. We do, however, know all their directions. The components of the forces and
their contributions to the torque about the pivot are:

n⃗g

ng,x = 0N
ng,y =+ng

τng,z = 0N·m

f⃗

fx = fx

f y = 0N
τ f ,z = 0N·m

57◦
+123◦

4m

n⃗w

nw,x =−nw

nw,y = 0N
τnw,z = (nw)(4m) sin(+123◦)

=+(nw) (3.355m)

57◦

−147◦

3m
F⃗

Fx = 0N
Fy =−700N
τF,z = (700N)(3m) sin(−147◦)

=−1144N·m

Note that in the diagram for the friction at the ground we have drawn friction acting
towards the right. But we have not yet determined that this correct, quantitatively. For
this reason we leave fx as the unknown to be solved for.

Step 4: The equations for static equilibrium are as follows: The sum of the horizontal
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(x-components) of the forces sum to zero

Fx + fx +ng,x +nw,x = 0N (2.36)
0N+ fx +0N−nw = 0N (2.37)

The sum of the vertical (y-components) of the forces sum to zero

Fy + f y +ng,y +nw,y = 0N (2.38)
−700N+0N+ng +0N= 0N (2.39)

The sum of the (z-components of the) torques about the end of the ladder at the ground
sum to zero

τF,z +τF,z +τng,x +τnw,x = 0N·m (2.40)
−1144N·m+0N·m+0N·m+ (nw) (3.355m)= 0N·m (2.41)

Step 5: The equation for the y-components of force lets us solve for the normal from the
ground:

−700N+ng = 0N (2.42)
ng =+700N (2.43)

Since there was no friction at the wall to contribute a vertical force, it makes sense that
the normal at the ground has to support the full weight being applied to the ladder.
(Remember that we were also told to ignore any weight of the ladder itself.)

The equation for the sum of torques lets us solve for the normal from the wall:

−1144N·m+ (nw) (3.355m)= 0N·m (2.44)

nw = +1144N·m
3.355m

=+341N (2.45)

In our analysis in Step 2 we reasoned that the normal from the wall would have to
be smaller that the force due to the person (since its line of action is further from the
“pivot”). This result agrees with that reasoning.

Finally, with the normal from the wall we can use the equation for the x-components
of force to solve for the friction:

+ fx −nw = 0N (2.46)
fx =+nw =+341N (2.47)

As deduced through our construction of the check of the sum of forces, the friction has
the same magnitude as the normal from the wall. That this result is positive means
that our choice for its direction (pointed towards the right) was correct.

Answer: We were asked to find three things:
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1. The magnitude of the normal acting on the ladder at the wall: 341 N.

2. The magnitude of the normal acting on the ladder at the ground: 700 N.

3. The magnitude and direction of the friction acting on the ladder at the ground.
Friction has a magnitude of 341 N and is pointed towards the right.

Example 2.7 : Cable holding a Sign

SIGN

3.00 m

2.
00

m

A sign of mass 312 kg is attached to the side of a
building, as shown in the diagram. Find the tension
in the cable. Then find the magnitude and direction
of the force at the pivot. (Hint: Before calculating
any other quantities first find the angle between the
cable and the horizontal.)

We are asked to find the tension in the cable (which is a magnitude), and the force at
the pivot (which is a vector). Our answer for the force at the pivot is to be expressed in
terms of its magnitude and direction. Before we work towards finding any of those we
are told to calculate the angle between the cable and the horizontal. Here’s the diagram:

3.00 m

2.
00

m

θ
Using the triangle on the left with the cable as its
hypotenuse, we calculate with the inverse tangent
tan−1(2.00m

/
3.00m) = +33.7◦. But the angle that we

want is θ = 180◦−33.7◦ = 149◦.

Step 0: The Object is the sign.

Step 1: The sign is interacting with the Earth (by gravity), and the building (by the
cable, and at the pivot).

Step 2:

F⃗G

T⃗F⃗P

F⃗G

T⃗

F⃗P

When we first draw the free-Body Diagram we do not know the direction of the force at
the pivot. If we then draw the check of the sum of forces we can see that the force at
the pivot must point towards the right, but we don’t know its vertical component. If we
then sketch the line of action for gravity and for the tension, it looks like the moment
arm (the distance d) for both of those torques might be almost the same. So at this level
of qualitative reasoning we can not be certain which way the force at the pivot points.

Step 3: The components of the forces and the contributions to torque about the pivot
are:
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F⃗G

FG,x = 0N
FG,y =−mg =−(312kg)(9.81N/kg)=−3061N
τG,z =−(3061N)(1.50m)=−4591N·m

T⃗
+149◦

3.00 m

Tx = T cos149◦

Ty = T sin149◦

τT,z = (T)(3.00m) sin(+149◦)=+T ×1.545m

The force at the pivot is unknown, so we leave FP,x and FP,y as unknowns for which we
must solve. However, that force is at the pivot, so we do know that it does not exert a
torque: τP,z = 0N·m.

Step 4: The equations for static equilibrium are as follows: The sum of the horizontal
(x-components) of the forces sum to zero

FG,x +Tx +FP,x = 0N (2.48)
0N+T cos149◦+FP,x = 0N (2.49)

The sum of the vertical (y-components) of the forces sum to zero

FG,y +Ty +FP,y = 0N (2.50)
−3061N+T sin149◦+FP,y = 0N (2.51)

The sum of the (z-components of the) torques about the end of the ladder at the ground
sum to zero

τG,z +τT,z +τP,z = 0N·m (2.52)
−4591N·m+T ×1.545m+0N·m= 0N·m (2.53)

Step 5: Solving the torque equation for the unknown tension, we get

−4591N·m+T ×1.545m= 0N·m (2.54)

T = +4591N·m
1.545m

=+2971N·m (2.55)

Comparing this with the magnitude of the sign’s weight (3061 N) we find that they are
almost the same. This agrees with our guess made while constructing the check of sum
of forces, where the moment arm (the distance d) looked like them might be the same.

Substituting this value for the tension into the equation for the x-component of force,
we get

T cos149◦+FP,x = 0N (2.56)
FP,x =−(2971N·m) cos149◦ =+2546N (2.57)
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Similarly, from the equation for the y-component of force, we get

−3061N+T sin149◦+FP,y = 0N (2.58)
FP,y =+3061N− (2971N·m) sin149◦ =+1531N (2.59)

We were asked to express the force at the pivot in terms of its magnitude and direction.

x

y
From its components found above, we see that F⃗P
points into the first quadrant. Calculating with
the inverse tangent tan−1 (+1531N

2546N

) = +31◦, which is
in the correct quadrant. The magnitude is FP =√

(2546N)2 + (1531N)2 = 2971N. We note that this
magnitude is close to that of the tension in the cable.

Answer: The tension in the cable is 2546 N. The force at the pivot is 2971 N, pointed
towards the right at 31◦ above the horizontal.

Example 2.8 : (Advanced) Where the Normal acts

h
w

θ

A box of weight mg is at rest on surface that is in-
clined at an angle θ, as shown in the diagram. It has
height h and width w. 1. Find the magnitude of the
normal and the required friction for the box to be in
static equilibrium (sum of forces zero). 2. Find the
effective location of where the normal force acts for
the box to be in static equilibrium (sum of torques
zero).

We are asked to first solve for the forces required for the box to be in equilibrium. We
know that the normal will be perpendicular to the surface, pointed at the object, but
with a magnitude less than mg since friction will assist in supporting the object. We
know that friction will be parallel to the surface, and we reason that it should point
upwards along the incline. These will be found by requiring that the forces on the
object sum to zero.

After that we are to solve for where on the object the normal acts by applying the
constraint that the sum of torques is zero. Since there is no physical hinge or joint, we
will be free to choose the location of the axis of rotation (the “pivot”). The math that
we have to solve will depend upon that choice, by the physical result we obtain will be
independent of that choice.

Step 0: The object is the Box.

Step 1: The object is interacting with the Earth, and the surface. Consequently the
forces acting on the object are gravity, the normal, and friction.

Step 2:

The object is easy to draw, but we must make a choice of where the “pivot” will be
since there is no actual physical pivot (like a hinge) constraining the object. Obvious

Ch.2 Torques 97 Text for PPT {α13} October 24, 2022



choices might be one of the corners of the box, or its center of mass. For this example
I will choose the center of mass as the pivot. Requiring that the sum of torques about
this pivot be zero is saying that the object does not tumble (roll end-over-end) down the
incline.

(For the sake of completeness I will comment that choosing one of the corners as
the pivot would also lead to the same results we find below, but the trigonometry and
algebra we would have to solve becomes much more complicated – so we won’t do that
here.)

F⃗G

n⃗
f⃗

pivot

F⃗G n⃗

f⃗

f⃗

pivot

The line of action of friction is along the bot-
tom surface of the object, independent of the
incline of the surface. The friction points up-
wards along the incline, exerting a negative
torque about the center of mass.

n⃗

pivot

n⃗

pivot

If the normal remains at the center of the
object, its line of action will continue to pass
through the center of mass, and will provide
no torque. To counter the negative torque
exerted by friction the normal’s line of ac-
tion must shift down the incline, as shown,
to produce a positive torque.

Step 3:

A common approach to solving objects on inclines is to choose a tiled coordinate sys-
tem, with one axis parallel to the surface and the other perpendicular to the surface.
With that choice the normal and friction forces are aligned with separate axes: the fric-
tion along the axis parallel to the surface, and the normal along the axis perpendicular
to the surface. Consequently the unknown magnitudes of those two forces appear sepa-
rate from each other in the equations for the sums of the components of the forces. With
the unknowns already isolated, no complicated algebra is required to solve for their
values.

x

y

F⃗Gθ

FG,x =+mg sinθ
FG,y =−mg cosθ

x

y
n⃗

nx = 0N
ny =+n

x

y
f⃗

fx =− f
f y = 0N

Notice that the components of the gravitational force do not follow the usual pattern of
“cos for x and sin for y” because of the way that the angle θ is defined.

The torques exerted about the center of mass by the forces are determined below. In
what follows the distance s is the unknown value we want to find: it tells us where the
normal (modelled as a single force) acts to maintain static equilibrium.
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f⃗

pivot

h/2

τ f ,z =− f h/2

n⃗

pivot s

τn,z =+n s

By definition gravity does not exert a torque about the center of mass (τG,z = 0N·m).

Step 4: The sum of forces must be zero:

F⃗G + n⃗+ f⃗ = 0⃗N (2.60)

The components of the sum that are parallel to the incline are

FG,x +nx + fx = 0N (2.61)
(+mg sinθ)+0N+ (− f )= 0N (2.62)

The components of the sum that are perpendicular to the incline are

FG,y +ny + f y = 0N (2.63)
(+mg cosθ)+ (+n)+0N= 0N (2.64)

The sum of torques about the center of mass are:

τG,z +τn,z +τ f ,z = 0N·m (2.65)
0N·m+ (+n s)+ (− f h/2)= 0N·m (2.66)

Step 5: Solving the sum of forces gives

f = mg sinθ (2.67)
n = mg cosθ (2.68)

Substituting that into the equation for the sum of torques gives

(+n s)+ (− f h/2)= 0N·m (2.69)
+mg cos(θ) s−mg sin(θ)h/2= 0N·m (2.70)

s = 1
2 h tanθ (2.71)

Answer:

The normal acts at a distance s = 1
2 h tanθ from the center of the box. (It is geomet-

rically challenging to prove, but this is vertically below the center of mass!)
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Notice that the normal can only act on the surface of contact. This means that
s ≤ w/2. For this reason

1
2 w ≥ s = 1

2 h tanθ (2.72)
(w

/
h)≥ tanθ (2.73)

θ ≤ tan−1(w
/

h) (2.74)

What does this mean, geometrically?

If we define ψ= tan−1(w
/

h), then we notice that θ =ψ would have the center of mass
vertically above the corner of the box (shown below). Tilting the incline any further
would place the center of mass beyond the supporting surface of contact, and the box
would begin to tumble down the incline.

ψ

θ
ψ

θ =ψ
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Chapter 3

Materials

Experience teaches us that not all things are perfectly rigid. Even materials like wood and
metal, when they are thin enough, can be seen to bend when we push or pull on them. Think
of a wooden chop stick, or a metal paperclip.

If we look at a thicker, more solid piece of material, it is not too difficult to imagine that
we might be able to make it bend too, if we were strong enough. You can bend a chop stick
with your hands, but you can’t bend a door or large table. And you certainly could not bend
the trunk of a large tree. You can bend a paper clip, but you can’t bend a car door. And you
certainly could not bend a steel beam from a building.

However, there was a machine that bent the car door into its shape from a flat sheet
of metal. And there are (unfortunately) earthquakes that could bend the metal beams of
buildings. The point of this line of thinking is to realize that there is no size of metal object
that can not be bent, it’s just that a proportionally larger force would be required.

This result is an example of a physical fact:

Everything bends.

Wood, plastics, metal; these we can all imagine bending. But glass? concrete? bones?!?
Do these materials bend? Yes, they do, and it is possible to measure how much they bend.
Stiffer materials bend less.

Experience also teaches us that if you bend something too far, it will break. Because the
chemical bonds that hold the atoms of an object together represents only a finite amount of
energy, it is possible to break any chemical bond. This underlies a critical physical fact:

Everything breaks.

In the context of your Physiotherapy Technology program the patients you will be helping
will often have suffered from some injury where a part of their body, muscle, tendon, liga-
ment, or bone, has broken. Being able to understand how parts of the body may break is the
first step in understanding a path to restoration.

The physical properties of stiffness and strength are the subject of this chapter.
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3.1 Everything Bends

Everything is made of atoms, and atoms are bound to each other by chemical bonds. It is
through their chemical bonds that atoms exert the forces that hold the material together.
Each chemical bond between the atoms in a material has an equilibrium length (the distance
between the centers of the bound atoms). When an external force is applied to the object
the length of the bonds change until a new equilibrium is achieved between the externally
applied force and the bond forces between the atoms. In this section we will study the
relationship between the forces applied to the object and the change in an object’s geometry.

3.1.1 Stress

When an external force is applied to the object the length of the bonds change until a new
equilibrium is achieved between the externally applied force and the bond forces between
the atoms. The change in the length of an elastic band is an example of this.

Go get yourself a couple of identical elastic bands (three will do). Hold your hands up
with your palms facing you. Now stretch a single elastic band between the little finger
on each of your hands. Feel the force that takes. If we wrap three rubber bands around
your fingers it becomes three times more difficult to stretch. But note! We haven’t changed
the material, just its geometry. The distance between your fingers when the elastics are
not stretched has not changed. But the elastic material between your fingers is now three
times thicker. The “strength” of a rubber band depends upon the cross-sectional area of the
material.

So, is there a way to speak of the “strength” of a material independent of its geometry?
Of course! That is what this section is about. Consider the following example.

A table leg made from a solid piece of wood can hold the same weight as a table leg
made from a bunch of chopsticks bundled together. We think of a solid chunk of wood as
being “stronger” than a thin chopstick. But both are made of the same material, and it is
natural to think that their material has the same strength. What makes a solid table leg
“stronger” than a chopstick is that it is wider. So our sense of “strength” is a blend of the
actual stiffness of the material itself and the cross-sectional area of the object made from
that material.

If we pull on both ends of a single chopstick, it may stretch a certain (small) amount.
The amount it stretches will depend upon the amount of force we apply. If we pull on both
ends of a piece of wood – imagined as a bundle of chopsticks – and we want it to stretch as
much as the single chopstick by itself, then we will have to apply that original amount of
force once for each chopstick in the bundle. If the chopsticks in the bundle are understood as
the fibers of the solid piece of wood, then what matters is the “force per fiber” applied to the
material. This means that the total amount of force required to stretch an object a specified
amount is proportional to its cross-sectional area.
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For this reason when we study the effect that an applied force has on the shape of an
object, we measure the applied force per area. This ratio is called the stress:

stress= force
area

(3.1)

The symbol used to denote stress is the Greek letter sigma (σ), and the mathematical state-
ment that defines stress is written

σ= F
/

A (3.2)

This equation says that the stress equals the magnitude of the applied force divided by the
area that it is being distributed across.

F⃗

F⃗

A

Force per area is usually pressure, which is how our pushing on a surface is distributed.
But stress is defined even when we pull on an object. We first saw the concept of pressure in
chapter 1, sub-section 1.2.2, where we studied the details of the normal force at contact. We
will return to study the concept of pressure in greater detail in chapter 4. When we study
sound waves in chapter 5 air pressure will be one of the key physical quantities involved in
its description. Pressure, in the contexts of the normal and “air pressure” measures how a
push is distributed across an area. But stress is defined so that we can measure how a force
is distributed across an area when we push, when we pull, apply a shear, or even twist on
that area.

The units of stress are newtons per square metre. One newton per square metre is
defined to be one pascal of pressure (1N/m2 = 1Pa). This unit can and will be used to
quantify stress, not just pressure.

Even though the pascal is a nice Metric unit, it is impractically small. A force of one
newton is the force due to gravity acting on just a hundred grams (just a little less than
your cellphone, probably). If you can imagine distributing that weight over a square metre
then you can imagine how light that feels. One pascal is a small unit for pressure.

In biomechanical and engineering contexts forces of tens or even thousands of newtons
are not uncommon. The forces are applied over areas measured in square centimetres or
even square millimetres! A smaller area leads to a proportionally larger stress. For this
reason we will quite frequently find ourselves using units like

1GPa= 10+9 Pa= 1000000000Pa (3.3)

1MPa= 10+6 Pa= 1000000Pa (3.4)

1kPa= 10+3 Pa= 1000Pa (3.5)

Yes, you are reading those correctly: millions, even billions of pascals of stress. The numbers
seem large, but that is only because the base unit (the pascal) was so small to begin with.
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(As a parallel, imagine that our base unit of distance was equal to the millimetre; what
would the distance between Montréal and Toronto look like in those units?)

You probably remember that the atmospheric pressure at sea-level is 101 kPa. The next
three examples show how similarly large stresses arise in every-day situations.

Example 3.1 : Standing on my own two feet

I have a mass of about 90 kg. The stress at my ankles is more than the stress at the
bottom of my feet. The bottom of my foot measures 30 cm by 12 cm. The shape is rather
complicated, but we can estimate its area as a rectangle. My ankles are (approximately)
circles of diameter 9 cm. What is the stress at the bottom of my feet? Ignoring the
portion of my weight due to my feet, what is the stress at my ankles?

Stress measures how force is distributed across an area. In the case of my feet, the
force is my weight and the area is the bottom of both feet. So we model the area as two
rectangles, each measuring 30 cm by 12 cm. If we are going to obtain a stress measured
in units of pascals then our areas must be in square metres. So my weight is distributed
over an area

A = 2× (0.30m×0.12m)= 0.072m2 (3.6)

at the bottom of my feet. The force is my weight: FG = 90kg×9.81N/kg = 882.9N. The
stress at the bottom of my feet is thus

σ= F
/

A = 882.9N
0.072m2 = 12262.5Pa= 12kPa (3.7)

In the case of the case of my ankles the force is the same (since we neglect the
difference between my entire weight and my weight less my feet), but the area is now
both ankles. We are told they are approximately circular, each of diameter 9 cm. The
area of a circle we know to be given by the formula π r2.

CAUTION!: The formula for circle area is in terms of the radius, but we are given
the diameter. In this example the diameter is 9 cm, the radius to use is 4.5 cm. So the
area of one circle is π (0.045m)2 = 0.006361725 . . . m2. The total area of support at my
ankles is twice that. Consequently the stress is

σ= F
/

A = 882.9N
2×0.006361725 . . . m2 = 69391.6 . . . Pa= 69kPa (3.8)

The stress at my ankles (69 kPa) is almost six times greater than at my feet (12 kPa)
because the area is so much smaller.

When calculating stress (measured in pascals) the area must be in square-metres.
If you always include the units of each factor in your calculations they will guide you to
perform conversions when they are necessary.

You should re-do that example using your own measurements. Measure the bottom of
your shoes, and the diameter of your ankles, to find the appropriate areas.
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Example 3.2 : Tubular table leg

A table is supported by four identical legs, each a metal tube. Each tube is circular
in cross-section. Each has outside diameter 5.00 cm, and is made from metal that is
3.8 mm thick. If the table (excluding the legs) has weight 29.4 N, what is the stress in
the material of each leg?

■PICTURE: [[table on four legs]]

When a force is applied to a hollow object the stress is distributed over the place where
there is material, and not at all in the hollow. The cross-section of one of the tubes looks
like this:

3.8 mm
5.

00
cm

The area to use in calculating the stress is the portion colored gray in the diagram. We
find the area of the material by subtracting the hollow portion from the entire tube.
What we must be careful with is finding the correct radius to use for each contribution.

The radius is half the diameter. So the radius of the whole tube is router = 1
2 ×

5.00cm = 2.50cm = 0.0250m. The inner radius of the hollow in the middle of the tube
is 3.8 mm less than the outer radius due to the thickness of the material. So the inner
radius of the tube is rinner = 2.50cm−3.8mm= 0.0250m−0.0038m= 0.0212m. The area
of the material is thus

π r2
outer −π r2

inner =π(0.0250m)2 −π(0.0212m)2 (3.9)

= 0.001963495m2 −0.001411957m2 (3.10)

= 0.000551538m2 = 5.51538×10−4 m2 (3.11)

The weight of the table is distributed equally on the legs. Thus each leg supports a
quarter of the weight. The force each leg supports is 1

4 ×29.4N = 7.35N. Consequently
the stress in the material of each leg is

σ= F
A

= 7.35N
5.51538×10−4 m2 (3.12)

= 1.332637×10+4 N/m2 = 13.3kPa (3.13)

It is important to remember that the rules of significant figures should only be ap-
plied to the final results of a calculation, and not to the intermediate steps. In cases
where differences are being taken, and the difference is only a small fraction of either
number, rounding prematurely can sometimes lead to very poor accuracy in the final
result.
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IMPORTANT : radius versus diameter

When dealing with circular cross-sections or areas be very careful to get the radius.
This is important because, typically, we are given the diameter. Even if the circular
area is exposed (like the end of a cylinder) it is usually not possible to find the center of
the circle with any accuracy, and measuring the radius is not practical. Thus, when the
size of a circular object is measured you usually do so by measuring across its width, and
hence get the diameter. Any equations for the circle are expressed in terms of the radius.
Be certain to determine the radius from the given information before proceeding.

Example 3.3 : Hanging a mass with an elastic

A 100 gram mass is hanging from an elastic band, as shown in the
photograph. The elastic band is 6.2 mm wide and 0.8 mm thick.
Measured in megapascals, what is the stress in the material of the
elastic?

The mass has a weight of 0.100kg×9.81 N
kg = 0.981N. The cross-sectional area of the

band is 6.2mm×0.8mm= (6.2×10−3 m)× (0.8×10−3 m)= 4.96×10−6 m2. Looking at the
photograph we see that the elastic is a loop, and that there are two segments supporting
the mass. Thus its weight is being supported by the elastic with a cross-sectional area
of 2× (4.96×10−6 m2)= 9.92×10−6 m2.

The stress in the material is thus σ = F/A = (0.981N)
/

(9.92× 10−6 m2) = 9.89×
10+4 Pa= 0.00989×10+6 Pa= 0.0989MPa. Noting that we only had one significant figure
for the width of the band, this result should be written 0.1 MPa.

3.1.2 Deformation

There are many, many different ways that forces can be applied to an object. We will focus
on studying only those situations in which the forces applied sum to zero. This is a choice to
keep our studies in the context established in chapters 1 and 2 where the forces and torques
applied keep the object in static equilibrium. The forces and torques sum to zero, and the
object remains in equilibrium, but now we will study how these applied forces and torques
cause the shape of the object to change.

Tension

If we grab opposite ends of an object and pull, we say that the object is under tension. If
the object is flexible enough, we might see its length increase as we stretch it.
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Li

Lf

Li

F⃗ F⃗

The stress generated by this pair of applied forces is defined to be σ = F
/

A. Note that
even though there are two forces (one on each end) there is no “factor of two” in the definition
σ= F

/
A because the forces actually add to zero. If it helps you understand why there is no

factor two, you can imagine that σ= F
/

A is measuring the stress applied across the surface
at one end of the object, and the other force is just there to keep the object in equilibrium.

Usually, when speaking exclusively about tension, the forces applied at each end are on
a common axis. When this is true the pair of forces not only sum to zero, but also apply no
net torque to the object. Sometimes, to be explicit about this condition, tension is character-
ized as “axial tension” (the forces are on a common axis). More commonly this situation is
referred to as the object being subjected to tensile stress.

Uniformity of Stress

Since the object is in static equilibrium each piece of it is also in static equilibrium. This lets
us determine the forces and stresses inside the object. For example, let’s consider the left
half of an object under tension:

F⃗ F⃗
The whole object, with the two externally ap-
plied forces subjecting it to tensile stress.

F⃗ F⃗
Here we imagine a surface that would cut
the object in half.

F⃗
How does this piece of the object remain in
equilibrium? What forces are being exerted
on it by the other pieces of the object?

In static equilibrium
∑

F⃗ = 0⃗N is true for the object as a whole. But if the object as a
whole is in static equilibrium, then so too is each piece of it. This means that

∑
F⃗ = 0⃗N is

true for each piece of the object. This means that in the last diagram above there must be a
force (or forces) acting at the surface where this piece connects to the rest of the object. This
force, an internal force, is part of the interactions between the pieces of the object that hold
the object together and give it its shape and solidity.

In the diagram below, which pictures the left half of the object, the internal force must
balance the externally applied forces. This means that, at any cross-section of the object,
the internal force must have the same magnitude as the externally applied force. (In the
context of strings, ropes and cables, this internal force is what we previously referred to as
the tension.)

F⃗external F⃗internal

This leads to a very important set of results: If the cross-sectional area of an object is
constant along its length, then the stress is the same at each cross-section. But if the cross-
section varies along the object’s length, then the stress will vary along its length. With the
force constant along the length, the stress will larger where the cross-section is narrower,
and the stress will be smaller where the cross-section is wider. This is very important in the
biomechanical context since bones do not have a constant cross-section! (Consider the shape
of the femur as an example.)
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Compression

If we grab opposite ends of an object and push, we say that the object is under compression.
(Sometimes this situation is referred to as the object being subjected to compressive stress.)
If the object is flexible enough, we might see its length decrease as we squeeze it.

Li

Lf

Li

F⃗ F⃗

As in the case with tension, the force of compression is the same throughout, but the
stress is uniform only if the object has the same cross-section at each point along its length.
The compressive stress will be greatest where the cross-section is narrowest.

In contrast to tension compression leads to a decrease in length. The other significant
difference between tension and compression is the problem of instability. In the case of
tension, if the two applied pulls are not along the same axis, then they will be applying a
torque that will turn the object until the forces are along the same axis. In contrast in the
case of compression, if the two applied pushes are not along the same axis, then they will be
applying a torque that will turn the object even further from alignment.

Shear

If we place our hands on opposite sides of an object and then move our hands across each
other (in the way that we might rub our hands together), we say that the object is under
shear. If the object is rectangular and is flexible enough, we might see its shape become
like a parallelogram.

F⃗

F⃗

Unlike tension and compression, where the applied forces are perpendicular to the cross-
section of the object, shear forces are parallel to the cross-section of the object. The quantity
that measures the stress generated by an applied shear still has the form σ = F

/
A, but

the area A is now the section parallel to the surface where the forces are applied. Imagine
spreading out a stack of playing cards, with each card sliding over its neighbors, and you
can see the cross-sectional area A is the area of each card. As with tensile and compressive
stresses shear is uniform across an object of uniform cross-section.

Note carefully that pure shear, as diagrammed above with no other forces, applies a net
torque. In reality if an object is subjected to a shear and it remains in equilibrium, other
forces must be present to cancel the torque produced by the forces that are producing the
shear. In a related circumstance, if tension or compression is applied to an object and the
forces are not axial, then shear will also be present. All of this is to say that pure shear is
an idealization. Situations in which shear is applied, and the material is subjected to shear
stress, do happen, but other forces will be present if the object remains in equilibrium.
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Torsion

Pushing and pulling on an object can stretch, compress or shear an object. But how do we
twist an object? There are two ways.

The first (perhaps more natural-feeling?) way is to grab both ends and twist, like we
might when wringing water out of a small cloth. Here we can see the object twisting around
its length, and its edges now follow a helix. Each hand applies a torque of equal magnitude,
about a common axis, but of opposite sense. The net torque is zero. The relation between
the torques and the object that define this type of deformation is that the axis of rotation
that each torque would generate is parallel to the axis of the object.

When torques are applied to an object in this way each segment of the object is trying to
rotate opposite its neighbors. For this reason when torsion is applied to an object there is
non-uniform shear present. The pieces at the edges are trying to slide the furthest, while
the pieces on the axis not at all. The shear is the greatest at the outer surface of the object
and zero at its center.

Bending

The second way to twist an object is to grab each end, with your palms facing upwards, and
then turn your wrists towards each other. In this case the axis of rotation that each torque
would generate is perpendicular to the axis of the object. The sum of torques is also zero in
this case since each hand applies a torque or equal magnitude, but of opposite sense. The
main difference between this case and previous (where the object was twisted around in a
helix) is that the axis of the object bends away from its equilibrium.

When an object is being bent there is tension on the edge that is being stretched and
compression on the edge that is being squeezed. We can see why this is true if we imagine
the object being made of layers. If each of the layers were not attached to each other, then
they could slide past each other as the object were being bent and each layer could remain
the same length. In the actual object each of the layers is attached to its neighbors, and
they cannot slide past each other. In the actual object we can see that the layers will have
different lengths: those that are longer than before will be in tension and those that are
shorter than before will be in compression. This behavior controls how an object that is
being bent will break (sub-section 3.2.3).
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The undeformed object, visualized as if
it were built from separated layers.

The object deformed by bending stresses.
The separated layers each maintain their
length. Look closely and notice how the ends
are not attached to each other.

If the layers remain attached to each other, then their lengths
must become different. The layers on the concave side must
become shorter and the layers on the convex side must be-
come longer. Again, look closely at the ends and now notice
how they remain attached to each other.

The forces that would manifest this distribution of stresses and consequent deformation:
In the next diagrams we see how a bending deformation can be produced by either a pair of
applied torques (at each end) or a pair of shear forces applied to each half.

From the details shown above we can see that applied torques will always generate
shear stresses in a material. Conversely we’ve seen that the applied forces that generate
shear stresses have an associated torque. Torque and shear are inter-related, but are not
identical. Whenever torque is applied to an object, there will be torsional and/or bending
deformations. Whenever torque is applied to an object, there may be tensile or compressive
stresses generated, but there will always be shear stresses generated in the material.

3.1.3 Strain

With the different types of deformation mapped out in the previous sub-section, we now turn
to quantifying how we will measure the amount of deformation.

As a specific case, let’s consider two objects made from the same material, with the same
cross-sectional area, but with one of them being twice as long as the other (they have lengths
Li and 2Li). If we apply the same amount of axial tensile stress, the length of both objects
will increase. Let’s call the amount of the change in length of the shorter object ∆L. By how
much will the (initially) longer object stretch?

Li

2Li

The two objects, initially.

Li
∆L

2Li
?

The two objects, with equal stress.
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Each half of the initially longer object are identical to the initially shorter object. Be-
cause of this, when subjected to the same tensile stress, each half will stretch by the same
amount (∆L). Thus, in total, it will stretch twice as much (2∆L), as shown in the diagram
below.

2Li

Li

Li

The longer object, initially, visualized
as two identical halves.

2Li
2∆L

Li

Li

∆L

∆L

The red arrows are the externally applied
forces that are exerting the tensile stress.
The orange arrow are the internal tension
that keep the two halves attached.

We could repeat this argument in cases where the initially longer object was longer by
some other factor (like 3, or 7, or 42.1). In all those cases the amount by which it stretches
is proportional to the factor by which it was initially longer. That is: for the same stress the
amount of deformation is proportional to its initial length. This shows that the ratio of the
change in length to the initial length will be independent of the initial length!

For axially applied forces the strain is defined to be the change in an object’s length
relative to its original un-stressed length. (For changes in the shape of an object due to
shear or torsion the deformation is characterized by the angle, but we will not study those
cases quantitatively in this course.) The symbol used to denote strain is the Greek letter
epsilon (ϵ), and the mathematical statement that defines strain is written

ϵ= ∆L
Li

(3.14)

where “Li” is the initial, un-stressed length of the object. The collection of symbols “∆L” does
not mean “∆×L”. It means the change in the length, specifically the difference between the
final and initial lengths: ∆L = Lfinal − Linitial. Because of that the strain of an object is
calculated by

ϵ= Lfinal −Linitial

Linitial
(3.15)

An example will show how this is used in practice.

Example 3.4 : Rope stretch

A rope of length 3.050 m is pulled from both ends. The rope stretches to a length of
3.062 m. What is the strain of the rope?

The strain is a ratio of lengths, so our answer will have no units. Since the change in
length is small in comparison to the original length, we expect the strain to be a small
number. Since the length increases, the strain must be positive.

The change in the rope’s length is ∆L = Lf −Li = 3.062m−3.050m = +0.012m. (If
we concern ourselves with the number of significant figures we note that, even with the
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lengths given with four significant figures, the difference has only two.) The strain is
thus

ϵ=∆L
/

L (3.16)
=+0.012m

/
3.050m (3.17)

=+0.0039=+3.9×10−3 (3.18)

The strain is thus ϵ=+3.9×10−3.

There are several things to note about this result:

(1) Strain is a length divided by a length, so it has no units; it is just a number. Since
it is a ratio of lengths it is critical to express both the numerator and denominator in
terms of identical units of length before dividing. (Refer back to example 0.1.2.)

(2) The strain is very small in magnitude. This is typical for solid materials. If you
ever calculate a strain that is bigger than one, and the material is not a soft elastic, then
you can be sure you’ve made a mistake – or the object has completely broken! Since the
strain is usually a very small number, strains will usually be written using scientific
notation which shows the power of ten explicitly; as in this example with the factor
10−3.

(3) The sign tells us if the length has increased or decreased. A positive strain is
when the final length is greater than the initial, when the object’s length has increased.
If the strain were negative, the final length would be less than the initial, which would
indicate that the object’s length had decreased. As with vector components it is a good
habit to explicitly include the sign of the strain, even when it is positive.

3.2 Everything Breaks

Everything is made of atoms, held together by chemical bonds. Each chemical bond has
a bonding energy – the amount of effort required to separate the bonded atoms. For this
reason every material can be broken by a finite amount of effort; there is no such thing as
an “indestructible” material. There is an upper limit to the amount of mechanical energy
that the material of an object can absorb before the object becomes permanently deformed
or broken.

Below that limit all of the work done to it is returned when the stress is removed. This
fact will be explored in more detail in chapter 4 when we develop the topic of Energy.
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3.2.1 Elastic Regime

Every solid material has a range of stress for which, when that applied stress is removed,
the object returns to its original shape, and all of the work done to it is returned when the
stress is removed. The range of deformation for which the object will return to its original
shape is called the elastic regime. This physical characteristic of a material is referred to
as its elasticity.

Generally, for small amounts of applied stress the amount of deformation (measured by
the strain) is proportional. (In your high-school physics you should have see this as Hooke’s
Law for idealized springs, which relates force to extension: F = kx.)

3.2.2 Yield & the Plastic Regime

For most materials there is a point beyond which increasing the applied stress begins to
change the microscopic structure of the material. Molecular bonds are rearranged or bro-
ken. In materials where it is possible, pieces shift past each other. This is called the yield
point. Past the point of yield, when the applied stress is released, the object does not re-
turn to its original shape. This deformation is characterized as being plastic. The physical
characteristic of a material that quantifies how easy it is to deform in this way is called its
plasticity.

(Here, because of history, we have two related words: the physical characteristic of plas-
ticity, and the noun plastic. The category of materials commonly referred to as “plastic” –
like the polymeric materials used to make water bottles and cellphone cases – have that
name because they are easy to deform plastically. There is no deeper meaning.)

The property of plasticity is utterly critical to modern manufacturing since it is what al-
lows us to shape metals and polymeric materials. Cars, containers, computers, even knives
and forks, are objects that could not be made if we could not deform the materials.

In the biomechanics, the value or danger of plastic deformation is strongly dependent
upon the amount of deformation and the anatomical segment that is being deformed. When
exercising a very small amount of plastic deformation is necessary to stimulate growth, and
subsequent strengthening. But large amounts of deformation of tissues like tendons and
ligaments, like sprains, are not easy to recover from.

3.2.3 Failure

All materials are held together by their chemical and inter-molecular bonds. Every bond
of this type represents a finite amount of energy. Consequently every material can be dis-
rupted and broken by a finite amount of effort. There is no such thing as an indestructible
material.

The way in which a material fails depends amount the type of material and the type of
stress to which it is subjected. There are almost no simple rules about what failure will look
like – though we will look a little closer at this in section 3.4.
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3.3 Stress-Strain Diagrams

The old wisdom is that “A picture is worth a thousand words”. The scientific fact is that “A
graph can contain thousands of data points”. For this reason how things bend and when
things break are data that can be expressed graphically. Our goal is to learn how to read a
stress-strain diagram to extract such information.

3.3.1 Stress-Strain Relationship

When forces are applied to an object its deformation can be measured. From the object’s
geometry the corresponding strain and stress can be calculated. As the applied forces are
varied and the resulting deformations vary, the accumulated data can be graphed. Conven-
tionally the stress is plotted as a function of the strain.

ϵ(10−3)

σ(MPa)

0 1 2 3 4 5
0

15

30

45

60
Example of a stress-strain graph:
Plotted is the stress, σ (measured
in units of megapascals), as a
function of the strain, ϵ (which
is dimensionless, but plotted as
multiples of 10−3 = 0.001).

It might seem strange to plot the relation this way. It’s correct to think that, realistically,
we control the force applied (thus the stress), and as a result of that there is a deformation
(the resulting strain). So you might think that the stress should be the independent variable
on the horizontal axis. However, the purpose of the stress-strain diagram is to tell us what
the stress (force) is in the material when we have a measurement of the strain (deformation)
of the object. For this reason, stress-strain relationships are plotted with stress as a function
of the strain.

Reading a Stress-Strain Diagram

The most important fact to remember about a stress-strain diagram is that it is the graph
of the properties of a material, not of a specific object with a specific geometry. Remember
that force was converted to stress by factoring out the area and the that deformation was
converted to strain by factoring out the length (in the case of axial stresses). Stress and
strain relate in a manner that depends only on the properties of the material, and that is
independent of the object’s geometry.

To read any information from a stress-strain diagram you must establish the context.
What is the category of applied stress?: tension, compression, shear, torsion, bending? (Re-
call the categories of deformation listed in 3.1.2.) You must know the context to order cor-
rectly interpret the data of the graph. Usually this information is not written on the graph
itself, but is found either in the caption to the graph, or in the surrounding text; be certain
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to find this before trying to extract data from the graph. In this course we will limit our
quantitative analyses to axial stresses of either tension or compression. The more complex
cases of shear, torsion and bending will be considered qualitatively only.

Read the units carefully. Strain is a number (no units), but will typically be expressed
as a multiple of a small number, or sometimes expressed as a percent. Stress is usually
measured in very large multiples of the pascal, typically megapascals or gigapascals. Be
sure to read the units on the axes of the stress-strain diagram very carefully.

If you must apply the information obtained from a stress-strain diagram to an object
with a specific geometry, remember that the deformation can be obtained from the strain
(∆L = ϵLi) and that the force can be obtained from the stress (F = σA). In this process of
calculation be certain that: the length Li of the object’s geometry is along the axis of the
applied stress; and, the area A the cross-section perpendicular to the axis.

3.3.2 Stiffness

How much effort is required to change an object’s shape? To quantify this we would ask what
amount of force is required to achieve a specific amount of deformation. This measurement
would quantify the stiffness of the material.

The steeper the graph, the stiffer the material. The value of the slope of tangent to the
graph at any point is called the Young’s Modulus of the material in that state:

Young’s Modulus= ∆stress
∆strain

(3.19)

Mathematically this is defined as

Y = ∆σ
∆ϵ

(3.20)

(Note that Young’s modulus is also sometimes referred to as the material’s modulus of elas-
ticity. For that reason you may sometimes see the symbol “E” used for this quantity.) The
larger the value of Y the stiffer an object made of that material will be.

“Stiffness”, defined in this way, will not depend upon the geometry of the object that we
measure. It does not depend upon the length of the material since that was factored-out
by the definition of strain. It does not depend upon the cross-sectional area since that was
factored-out by the definition of stress. It will depend only upon the material.

The value of Young’s modulus is a property of the material that does not depend upon
the geometry, but it does vary with the strain of the material.
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ϵ

σ

A

Wrong

The point “A” circled in blue has coordinates (ϵ,σ).
The slope of the green line, which starts at the origin,
equals the ratio ∆σ

/
∆ϵ = σ

/
ϵ. This is not the value

of Y when the material is in the state “A”.

ϵ

σ

A

Correct

The green line here is tangent to the stress-strain
curve at the point “A”. The slope of the green line is
the value of Y when the material is in the state “A”.
Y =∆σ/

∆ϵ is calculated using two points chosen on
the green tangent line.

The differences denoted by the “∆”s in the definition (3.20) are the differences between
two separated points on the line that is tangent to the stress-strain curve. Note that if the
stress-strain relationship is not a straight line then that slope is not equal to the ratio of
the coordinates: Y = (∆σ

/
∆ϵ) ̸= (σ

/
ϵ). This is shown in the diagram above, on the right.

Values

The table below presents some examples of the values of Young’s Modulus for some typical
materials.

Table 3.1: Young’s modulus (Y ), examples of ranges of values.

Material Y (GPa)

Ceramics 60 · · · 1000+
Porous Ceramics 8 · · · 100
Glass 50 · · · 90
Metals & Alloys 13 · · · 400
Composites 8 · · · 200
Wood 0.08 · · · 25
Polymers < 0.01 · · · 10
Polymers Foams < 0.01 · · · 0.5
Rubbers < 0.01 · · · 0.1

All of these entries have large magnitudes due to the fact that the pascal is a very small
unit of pressure. Since stresses are measured in pascals, the numerator of the expression
for the slope will typically be very large. This is compounded by the fact that the strain of
most materials (below their yield point) are very small, numerically. This makes the ratio
very large.

As you might expect, biological structural materials (like tendons, ligaments, and bones)
are extremely variable in their composition and properties. Their properties vary slightly
from person to person, but vary greatly depending upon which portion of the anatomy they
are sampled from, and even along which axis they are stressed! Consequently it is difficult
to meaningfully assign a single value of elastic modulus to classes of material like “bone”.
For our purposes it is enough to know that most biological structural materials have values
that fall in the category of composites, which is in bold in the table above.
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Hooke’s Law

In high school science you would have studied springs and elastics. The formula that de-
scribes the relation between the deformation (x) of the spring and the force (F) the spring
exerts on the thing causing the deformation is: F = kx. This formula is known as Hooke’s
Law.

As explained in sub-section 3.2.1, for sufficiently small stresses the object will return to
its original shape when the applied stresses are removed. For almost all solid materials the
stress and strain are linearly proportional to each other in this regime of small deformations.
When this is true the relation between the applied force (F) and the resulting deformation
(∆L) is

Y = ∆σ
∆ϵ

= σ−0Pa
ϵ−0

= σ

ϵ
= F

/
A

∆L
/

L
= L×F

A×∆L
(3.21)

Solving this to isolate the force, we get

F =
(
Y × A

L

)
×∆L (3.22)

Comparing this with Hooke’s Law (F = kx), since x =∆L we can see that the spring constant
is

k =Y A
/

L (3.23)

This is how the stiffness of the spring is determined by the object’s material and its geometry.
In a sense, this derivation takes us backwards through the process we used to define Y .

ϵ

σ

slope=Y

x

F

slope=k

We began by asking how to speak objectively of the “strength” of a material. We knew
that applying a force changed the shape of an object, but that the relation between those
quantities depended not just on the material, but on its shape. So, to answer the question,
we found a way to remove the factors of the object’s geometry. By factoring out the cross-
sectional area from the force we obtained the stress (σ = F/A), and by factoring out the
length from the deformation we obtained the strain (ϵ=∆L/L). The relation between stress
and strain was encoded in Young’s modulus Y .

But if we want to return to the specific instance of applying forces to an object of that
material with a specific geometry, the relation between force and deformation is Hooke’s
Law. When we specify the geometry we can map stress onto force (F = Aσ) and strain onto
deformation (x = Lϵ). The preceding result then shows the inter-relationship between the
value of Young’s modulus (which is a property of the material) and Hooke’s Law (which is a
property of an object made from that material, with a specific shape): k =Y A

/
L.
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Example 3.5 : Building material

ϵ(10−3)

σ(MPa)
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Wood is an inexpensive building material
that is easy to shape and join. The graph
on the left shows the elastic regime of its
stress-strain relation for when the wood
is under compression. In the graph stress
σ is measured in units of megapascals,
and the strain ϵ (which is dimensionless)
is plotted as multiples of 10−3 = 0.001.

A standard shape of wood used in house construction is the “two-by-four”. This is a
piece of wood that measures 2in×4in in cross-section, and has a length of eight feet
(8ft= 8×12in). If this piece of wood is supporting 11785 kg:

(a) What is the stress is the wood, measured in megapascals?
(b) From the graph, what is the Young’s modulus of this material?
(c) From the equation for the line, what is the strain in the wood?
(d) What is the change in length of the wood, measured in inches and in millimetres?

Notice that we have been given our information in a mixture of imperial units and
Metric; we will have to be careful with the units!

Reading the description of the graph carefully we note that the material is under
compression. (This graph would be in the third quadrant of the stress-strain plane,
but has been transposed up into the first quadrant for ease of use.) This means that
the answer for the change in the length will be negative. When we read a value from
the graph we will have to remember that both the ϵ and σ are, in fact, negative when
considering compression. So reading “σ = 37MPa” on the graph axis would actually
mean σ=−37MPa.

Part(a) To find the stress in megapascals, we need the force in newtons, and the area
in square-metres. The wood is supporting a mass of 11785 kg, which corresponds to
a weight of 11785kg × 9.81N/kg = 0.11561 × 10+6 N. The cross-section of the wood
measures two inches (2in×0.0254m/in = 0.0508m) by four inches (4in×0.0254m/in =
0.1016m), which is an area of 0.0508m×0.1016m = 5.16128×10−3 m2. Remembering
that this is under compression, the stress is thus

σ=−F
A

=− 0.11561×10+6 N
5.16128×10−3 m2 =−22.400×10+6 Pa=−22.400MPa

Part(b) The relationship in the graph between stress and strain in the material is
a straight line through the origin (ϵ = 0 and σ = 0MPa). This means that the Young’s
modulus for the material (which is the slope of this graph) can be calculated by choosing
the origin and the point at the far end of the line. The point at the top-right end of the
line has coordinates ϵ = −5×10−3 and σ = −40MPa (where we have remembered that
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the material is under compression). The Young’s modulus is thus:

Y = ∆σ
∆ϵ

= (−40MPa)− (0MPa)
(−5×10−3)− (0)

=+8GPa

Part(c) Looking at the graph, we see that a stress of −22MPa corresponds to a strain
somewhere between −2.6×10−3 and −2.8×10−3. (This is not accurate, but we read from
the graph to obtain an estimate of what our calculated answer will have to be.)

Since the straight line of the stress-strain relationship passes through the origin,
for any point on this portion of the curve we can write

Y = ∆σ
∆ϵ

= σ−0MPa
ϵ−0

= σ

ϵ

ϵ= σ

Y
= −22.400MPa

+8GPa
= −22.400×10+6 Pa

+8×10+9 Pa
=−2.8×10−3

This is within our estimate, so we are confident of the result.

Part(d) Given the initial length of the wood (Li = 8×12in = 96in) and the strain, the
change in the length is

∆L = ϵLi = (−2.8×10−3)(96in)=−0.27in

In millimetres this is ∆L = (−0.27in)(25.4mm)=−6.8mm.

3.3.3 Yield & Deformation

The stress (or strain) at which a material yields can be considered a second way of measuring
its strength.

Table 3.2: Yield stress, examples of ranges of values.

Material Yield stress (MPa)

Ceramics 80 · · · 10000<
Porous Ceramics 10 · · · 1100
Glass 212 · · · 440
Metals & Alloys 4 · · · 3000
Composites 50 · · · 1600
Wood 0.4 · · · 80
Polymers 5 · · · 80
Polymers Foams < 0.1 · · · 10
Rubbers 2 · · · 30

In the chapter on Energy we will return to this table to understand why ceramics are
not useful as a building material despite their large values of yield stress.
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3.3.4 Failure

The stress (or strain) at which a material fails (breaking into two or more separated seg-
ments) can be considered a third way of measuring its strength.

Table 3.3: Strain at Failure, examples of ranges of values.

Material Strain at Failure (#)

Ceramics 0.0003 · · · 0.01
Porous Ceramics < 0.0001 · · · 0.0016
Glass 0.0004 · · · 0.0005
Metals & Alloys 0.0005 · · · 0.9
Composites 0.008 · · · 0.05
Wood 0.003 · · · 0.05
Polymers 0.008 · · · 5
Polymers Foams 0.002 · · · 10
Rubbers 1 · · · 9

It is interesting to note that the order of this table, from greatest to least, is almost
opposite that of table 3.1. This means that (typically) the materials that are easiest to
deform are the ones that deform the most before breaking, and that the stiffest ones are the
ones the deform the least before breaking. Hopefully this will seem like common-sense to
you.

The exception to that trend are metals, which have high Y (but less than ceramics) while
having strains at failure greater than some composites! It is for this reason that metals are
used engineering.

3.4 Some Categories of Materials

[[Table: values of Young’s Modulus, Yield stress, and Failure for some typical materials]]
Comments comparing the ultimate stress, stress at failure and the typically large gap be-
tween those values and the Young’s Modulus.

3.4.1 Brittle Materials

Glass and other covalently bonded materials, like ceramics and crystals, are usually very
stiff. Their elastic deformation is usually so small as to be practically invisible to human
eyes. Aside from being very stiff their one defining characteristic is that their yield point is
also the point of failure, and that that failure is usually catastrophic. A material with this
behavior is referred to as brittle. While withstanding a large stress a brittle material might
appear the same as its unstressed state. But a slight increase in the applied stress past its
point of failure would lead to the material suddenly breaking, across its entire volume, into
separate pieces (into at least two, but sometimes thousands).
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ϵ

σ

Concentration of Stress

In brittle materials when failure begins it manifests as a crack at some location in the
material. In the volume surrounding that crack the stress is larger than just previously
because the crack is a surface where the material is no longer connected to itself. This is a
reduction in the cross-section of material across which the force in the material is distrbuted,
and thus an increase in stress occurs. With the material at the beginning of failure, this
increase in stress puts it even further into the failure regime, and the crack becomes even
larger, propagating across the material until it breaks into two (or more) pieces.

3.4.2 Plastics

ϵ

σ

3.4.3 Metals

[[diagram: Stress-Strain, initially linear, followed yield, followed by ductile region]] [[dia-
gram: Stress-Strain, initially linear, followed yield, followed by ductile region, followed by
strain-hardening regime]]

Ductile metals like copper.
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ϵ

σ

Metal alloys that exhibit strain-hardening, like steel.

ϵ

σ

The exception of brittle metals, like chemically pure iron.

3.4.4 Elastomers

Rubber, tendons, collagen.

[[diagram: gradual straightening of crumpled elastic, followed by elastic stretching]]

ϵ

σ

The “toe” of the stress-strain curve and the aligning of the elastic fibers.
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3.4.5 Composite Materials

“It’s complicated.”

Bone

Asymmetric stress-strain curve: the failure modes in the tensile stress regime are different
from the failure modes in the compressive stress regime.

You’ll see this in your Biomechanics class. Come back here to review the tools you’ll need
to read those diagrams.

Concrete

Large compressive strength, very little tensile strength.

Foams

Styrofoam. Foam metals (Eg.Porous tantalum.) used in bone implants.

The curves for materials of this type under compression begin with a regular-looking
elastic regime. But most of the material’s volume is bubbles. The walls of material that
surround those bubbles are thin, and thus provide very little support against applied stress.
Consequently the yield point happens much sooner for the foam that it would for a solid
piece of the same material.

Once beyond the yield point, the bubbles in the foam begin to collapse under the applied
stress. This appears as a plateau on the stress-strain curve: at an almost constant stress
the bubble progressively collapse.

Approaching the stage where almost all bubbles have been collapsed the properties of
the solid material re-emerge. This leads to a significant increase in the object’s stiffness.
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Chapter 4

Energy
I am going to help you learn what energy is.

But I have a problem: Energy is not a thing.

Energy is not a solid, like a block of wood that you can hold or throw. Energy is not a
liquid, like water that you can pour or dip into. Energy is not a gas, like air you can blow
into a balloon and then squeeze. If I am going to teach you about energy, I can’t pass some
to you and say “here, this is energy”. You can’t touch energy.

So I am lucky that touch is not your only sense.

You can feel that a fire is hotter than your body, and that your body is hotter than ice.
To throw a ball faster, you know that you would have to throw it harder. You can feel that
it takes more effort to move furniture across a room than to slide a book across a table. If
something falls onto your foot, you know that the further it falls, the more it will hurt. You
know that it is easier to whisper than to shout, and that it is easier to hear the shout than
the whisper. You can see that your computer screen is not as bright as the Sun.

Energy is as real as a solid object, a liquid substance or a gas – but energy is neither a
solid, a liquid nor a gas. Energy is something else. But it is real, and so can be precisely
measured.

Your sense of how hot or cold a thing is relates to the measurable quantity temperature,
and temperature is an indicator of the thermal energy in an object. The effort you make
to throw an object faster changes its measurable speed, which relates to its kinetic energy.
The effort that you make to slide a heavy piece of furniture relates to the strength of the
friction between the furniture and the floor, which dissipates your effort as thermal energy
into the surfaces of contact, vibrations in the floor, and sound in the air. The amount of
pain or damage you experience when something falls on your foot relates to the amount of
gravitational energy that has been transformed into kinetic energy that is then dissipated
into your flesh and bones.

This list of relations between our perceptions and the objectively different forms of energy
is meant to connect those things you know to the ideas that we will be studying.

4.1 Categories & Forms of Energy

The different forms of energy fall into two categories: Motion and Interaction.

4.1.1 Motion

The energy associated with motion is referred to as kinetic energy. In a real sense this
energy is the “effort” we put into making an object move. You may recall this type from
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high school: K = 1
2 mv2. That expression applies when the object (of mass m) is moving, as a

whole, with a speed v. Each piece is moving in the same direction and at the same speed –
moving with the same velocity, v⃗.

Coherent

But there are other forms of kinetic energy which are possible if the pieces of the object are
moving differently in relation to each other. It is possible for the different parts of an object
to be moving at different speeds and different directions, but in a way that is synchronized.
When the speeds and directions of motion of the pieces relate to each other coherently,
when the interrelationships between their velocities v⃗ do not change with time, motions like
rotation and oscillation can manifest.

Incoherent

At the other extreme, when the speeds and directions of motion of each of the pieces of
the object are unrelated to each other, the motion is random or incoherent. When this
randomness of motion is at the molecular level this form of kinetic energy is referred to as
thermal energy. This form is “referred to” as thermal energy because it is thermal energy.
In later sections we will study the relationship between this energy and temperature.

Units of Energy

While the velocity v⃗ of an object is vector, energy (which depends only upon the magnitude
of the velocity) is just a number. From the expression for kinetic energy K = 1

2 mv2 we can
see that the units of energy are mass times the square of speed. This combination is called
the joule (symbolized as J), and it is the SI unit of energy.

Conventionally it is defined in terms of mechanical interactions: the energy transferred
by a force of one newton acting through a distance of one metre is one joule

1J= 1N×1m= 1kg ·m2/s2 (4.1)

Despite being defined relative to mechanical work all forms of energy (thermal, gravita-
tional, etc) can be transformed into one another through interaction, and so are all measured
relative to the same unit.

4.1.2 Interaction

Back when we first discussed the types of forces (1.2) we encountered the two categories of
forces: contact, and non-contact. Here we discuss the underlying fundamental interactions
that are the cause of those forces.

Gravity

Objects with mass attract each other. This interaction is known as gravity. This interaction
is so weak that it can not be noticed unless at least one of the objects has the mass of a

Ch.4 Energy 125 Text for PPT {α13} October 24, 2022



planet. There are instruments that can measure these very small forces (like that between
a small piece of metal and a mountain), but on the human scale only the interaction with
the Earth as a whole matters.

Electromagnetic

Objects with charge attract if they are opposites and repel if they are the same. These forces
are referred to as electric forces. Charges that are moving exert magnetic forces on each
other. The magnetic interaction is usually treated mathematically as if it were separate
from electric interactions, but it is, in fact, physically an actual part of electric interactions.
For this reason they are referred to by a single name: electromagnetic interactions.

Electromagnetic forces are stronger than gravity by an enormous factor. Because charge
is balanced in atoms with equal numbers of protons (positively charged) and electrons (neg-
atively charged), we almost never see the direct strength of electric forces. When charges do
become separated, the enormous force between them causes them to rejoin almost immedi-
ately. One of the controlled exceptions to that rule is the subject of chapter 6, where we will
study electric circuits.

Nuclear

The profoundly small and dense center of an atom is called the atomic nucleus. The atomic
nucleus is a collection of protons (positively charged) and neutrons (zero charge). The elec-
tric repulsion between all the protons would explode the nucleus, except that there is a
profoundly strong attractive interaction between all the pieces of the nucleus. Changes of
electron interactions between atoms in molecules corresponds to changes in chemical en-
ergy, and in reactions like combustion can release heat and light. Similarly, changes in
nuclear interactions can release heat and light. But, because nuclear interactions are so
much stronger, the amount of energy released is proportionally much larger, as in nuclear
explosions, or in the burning of the Sun. Nuclear interactions are not directly relevant in
your studies towards becoming a Physiotherapy Technologist, and are mentioned here only
for the sake of completeness.

Contact

It is a fact that two objects can not occupy the same space. This fact manifests as a repulsion
between all pieces of matter that acts only at atomic distances. It is this interaction that
allows force and energy to be transferred through “pushes” and “pulls" between objects in
contact. “Contact”, described this way, is similar to the other interactions in that it can
transfer or transform energies. But it differs from interactions like gravity and electromag-
netism in that it can not store energy when objects are separated since it does not exist in
the space between objects, but only where they touch. When objects (specifically molecules,
atoms, or other fundamental particles) are brought into contact, energy can be stored by
this interaction as a contribution to the pressure (see section 4.6).
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Transfer and Transform

Energy can be transferred and/or transformed by interactions. The easiest example of this
is how a contact interaction can transfer kinetic energy from one object to another in a colli-
sion. A fundamental example is how friction transforms the kinetic energy of a sliding object
into sound and thermal energy. A common example is when something drops, converting
gravitational energy into kinetic energy. A more complex example might be how electro-
magnetic energy can be transformed through magnetic repulsion into the kinetic energy of
a projectile, which also increases the gravitational energy between the projectile and the
Earth as it flies upwards.

At the common surface of contact between two objects the normal force is generated.
This is the interaction that allows us to change the speed, and hence kinetic energy, of an
object. This contact interaction is what transfers energy when we push on an object.

If two objects are sliding across each other, then there is friction. This contact interaction
transforms the coherent kinetic energy of the objects’ motion (each as a whole) into the in-
coherent kinetic energy of their constituent molecules. This contact interaction transforms
macroscopic motion into thermal energy.

Energy is stored in the interaction.

Power

▲FIX: HERE: Move the contents of subsection 4.3.4 to here.

4.1.3 Forms of Energy

The different forms of energy fall into the two categories of motion and interaction. The
category of “motion” encompasses all the forms of kinetic energy that are associated with
all the different modes of motion. The category of “interaction” encompasses all the forms if
energy associated with the four basic forces of gravity, electromagnetic, nuclear, and contact.
All other apparent forms of energy are, in fact, combinations of these fundamental forms.

Motion Interaction

Coherent:
• Linear Kinetic
• Rotational Kinetic
• Oscillation / Vibration

Incoherent:
• Thermal

Gravity

Electromagnetic

Nuclear

Contact

Sound is not a separate form of energy. Sound is actually a variation in the kinetic
energies and density (hence pressure) of the molecules in the air. The way in which this
energy is transported from one place to another by waves will be the focus of our study in
chapter 5.
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Light that we can see and the heat radiated by very hot objects are not separate forms of
energy. They are both instances of energy being transferred by electromagnetic interaction;
specifically by electromagnetic waves.

Chemical energy is not a separate form of energy. The electrons and atoms in molecules
have kinetic energies. The electrons and atoms in molecules also have energies due to their
electric and contact interactions. A molecule can spin, and its shape can vibrate, which are
forms of kinetic energy. Chemical energy is the portion of all these combined energies that
can be changed when the arrangements of the electrons between atoms changes – when
there is a chemical reaction.

Related to chemical energy is the way in which energy is required to deform the shape
of atomic orbitals and molecular bonds. When the stress in a material is zero, the atoms in
the molecules of the material are a specific distance apart: their equilibrium distance. To
change that distance – to either try separating the bonded atoms, or to try pushing atoms
into each other – requires work. That work is stored in the deformed bonds as elastic energy.

4.1.4 Conservation of Energy

When we keep track of all the different forms of energy present we find, experimentally,
that their total does not change with time. This fact is referred to as the Principle of the
Conservation of Energy. Of all the physical laws, this is one of the most important because
of how it applies universally. Of all the physical laws, this is one of the most useful because
of its mathematical simplicity.

Specify what constitutes the System. Identify what objects and entities are inside (are a
part of) the system, and what are outside.

Identify what forms of energy are present in the system. Then name the interactions
present that can transfer or transform (change) these energies.

Draw a cartoon of the initial state of the system, and draw a cartoon of the finial state of
the system. Changes / physical process(es)?

The principle of the conservation of energy states that the total energy Esys of a system of
interacting objects remains constant. Interactions and processes inside the system can only
transfer or transform the types of energy present inside constituents the system, not change
the total amount of energy inside the system. This means that the final total energy of the
system Esys,f is equal to the initial total energy of the system Esys,i. (In this context “initial”
and “final” are synonymous with “before” and “after”.) The mathematical expressions for
this idea are:

Esys,f = Esys,i (4.2)
Esys,f −Esys,i = 0J (4.3)

∆Esys = 0J (4.4)

In cases when energy is added to, and/or removed from, the system, conservation of
energy is written

∆Esys =+Eadded −Eremoved (4.5)

■PICTURE: Object as system, separate from Earth, versus Object and Earth as system
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4.2 Temperature

The human senses are usually listed as sight, hearing, taste, smell, and touch. But the
sense of touch actually has several different aspects to it: a sense of pressure, a sense of
vibration, a sense of pain, and a sense of temperature. It is this sense of temperature that
lets us know if something is “hot” or “cold”.

Like all other human senses this sense of temperature is limited and subjective. Just as
there are wavelengths of light we can not see (ultraviolet and infrared, for example), there
are temperatures we can not experience. Just as our sense of taste can be confused by the
order in which we eat things (like orange juice and toothpaste), our sense of temperature
can be confused by exposure to extremes of temperature (“cold” water can feel hot if we just
came in from −30◦C).

Even though our senses of sight, taste and temperature are subjective and can be fooled,
they do respond (and correspond) to the objective phenomena of electromagnetic radiation,
chemical composition, and thermal energy.

4.2.1 Properties that Depend upon Temperature

Changing the temperature of an object can change its physical properties. The mechanical
properties are the easiest to observe and measure quantitatively.

Size change

The primary physical property that changes with temperature is size. The size of solid
objects increases with temperature; it expands. This effect is usually small (producing a
strain in the range 10−6 < ϵ < 10−4 for each Celsius degree of heating), but is measurable,
and can have significant engineering affects.

■PICTURE: Expansion joints in a large bridge

An example of this are the necessity of expansion joints that are found on large bridges.
For bridges with large spans (hundreds of metres) a strain of 10−4 corresponds to a change
of several centimetres! The expansion joints (gaps) are there for the material to expand into.
If they were not there, the bridge’s expansion could break the material.

Liquids and gasses (if pressure remains the same) also expand with increasing tempera-
ture, meaning their density decreases. This principle is used to construct liquid thermome-
ters.

Conversely, if the volume containing a liquid or gas is kept constant, the pressure they
exert on the container will increase with increasing temperature, and decrease with decreas-
ing temperature. It is this last fact that – through experiment – demonstrates that there
is a “coldest temperature”; there is a single temperature at which the pressure of any gas
becomes exactly zero. At that point there is no more thermal energy remaining to extract;
there is no colder temperature. This is called the absolute zero of temperature.
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Stiffness

The secondary property that changes is mechanical stiffness 3. In the case of solids usually
the value of their Young’s Modulus decreases as temperature increases, as do the values of
their yield stress and maximum strain (it becomes easier to bend and break materials at
higher temperature).

In the cases of liquids and gasses, as temperature increases they typically flow more
easily (measured by the property called viscosity). Microscopically it becomes easier for
their constituent molecules to slip past each other.

Phase Change

When the temperature is increased or decreased enough the object might change completely
by melting or freezing, or by vaporizing or condensing. This would be what is called a phase
change. After that, all its physical properties will be drastically different. These changes
happen a temperature that is a characteristic of the material. Phase changes can hence
be used to accurately determine when a specific temperature is achieved. (For example: if
water just begins to freeze you know you have reached 0 °C.)

Other properties

After we’ve talked about electrical properties of materials (like electrical resistance) in chap-
ter 6 we will see how temperature can also affect those properties.

The point of all these examples is that properties we can measure (like size, pressure,
stiffness, or electric properties) are directly affected by changes in temperature. By measur-
ing these changes, we can form an objective, quantitative measurement of the temperature.

4.2.2 Scales of Temperature

Celsius

To set a scale for measuring temperature a correspondence between temperature and some
physical property must be established. In the case of the Celsius scale, the transition from
solid to liquid water (melting) is defined to happen at T = 0◦C, and the transition from
liquid water to vapour (boiling) is defined to happen at T =+100◦C. Temperatures between
these two (like average body temperature +37◦C) are of interest and are important in the
human context. Temperatures below 0 °C (isopropyl alcohol freezes at −89◦C) and above
+100◦C (glycerol boils at around +290◦C) exist and are measurable. But absolute zero is at
−273.15◦C (exact), and there is no colder temperature.

Kelvin

The Kelvin scale of temperature is defined by setting T = 0K at the absolute zero of tem-
perature, and then equating a change of one kelvin with a change of one Celsius degree:

∆T = 1C◦ = 1K (4.6)
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(A change of one Celsius degree is written 1C◦. Note that the degree sign is after the unit
symbol.) The kelvin, as a unit of temperature, is one of the base units of the SI system
alongside the metre, second, and kilogram.

The important values to note are

0K=−273.15◦C (4.7)
273.15K= 0◦C (4.8)
293.15K=+20◦C (4.9)
373.15K=+100◦C (4.10)

Since one increment on the Kelvin scale is equal to one increment on the Celsius scale, the
relation between the relation between the two is very simple:

TC = TK −273.15◦C (4.11)
TK = TC +273.15K (4.12)

(Don’t bother memorizing this – I will give it to you, or you can look it up, if you’ll need it.)
This information is shown graphically, below.

−273.15◦C +26.85◦C

273.15 K 373.15 K

T(K)

0 100 200 300 400

T(◦C)

−200 −100 0 100

Fahrenheit

There is another temperature scale that you have probably heard of: the Fahrenheit scale.
Currently it is used only in the United States of America. But again, given that country’s
importance as our largest trading partner, we can not afford to completely ignore it.

The physical phenomena and numerical choices that were used to define this scale are a
little unusual:

• There is a specific mixture of water, salt, and ammonia that goes to a specific fixed
temperature by a chemical reaction; this was (initially) defined to be 0◦F.

• The increment of the scale was adjusted so that the temperature at which liquid water
freezes to ice was +32◦F, and body temperature was +96◦F (so that there was 64= 26

increments between the two).
• Experimentally, this made the temperature at which liquid water boils into steam

near +212◦F on this scale. The scale was further adjusted so that this became an
exact number.

The history of its development is even weirder than that, but you get the idea.
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The important values to know are

+32◦F= 0◦C (4.13)
+212◦F=+100◦C (4.14)

Consequently
1 F◦ = 5

9 C◦ = 5
9 K (4.15)

This shows that one increment on the Fahrenheit scale is a smaller increment than one on
the Celsius (and Kelvin) scale. The relation between the Fahrenheit and Celsius scales is
linear, and a little algebra can show that

TC = 5
9

(
TF −32◦F

)
(4.16)

TF =+32◦F+ 9
5 TC (4.17)

(Don’t bother memorizing the values or formulas in this subsection. I will give them to you,
or you can look them up, if needed.) Given this relation, here are a few correspondences:

−40◦F=−40◦C (4.18)
0◦F=−18◦C (4.19)

+68◦F=+20◦C (4.20)
+100◦F=+38◦C (4.21)

4.2.3 Thermal Equilibrium

4.3 Thermal Energy

We know from experience and experiment that temperature relates to energy. Specifically
increasing the thermal energy of an object increases its temperature. But temperature is
not the same as, and is not equal to, the thermal energy of an object.

4.3.1 Energy and Temperature

Transferring thermal energy into or out of an object changes its temperature. If we add an
increment of thermal energy ∆E > 0J its temperature increases ∆T > 0C◦ proportionally.
Similarly, if we remove an increment of thermal energy ∆E < 0J its temperature decreases
∆T < 0C◦ proportionally. The proportionality depends upon two factors: the amount and
type of material.

If an amount ∆E of energy is required to warm an amount of mass m by an increment
∆T, then twice that amount of energy will be required to warm twice as much mass by
the same increment. For this reason the amount of thermal energy required to achieve a
specific change in temperature is proportional to the amount of mass whose temperature we
are changing.

The remaining factor that relates temperature to thermal energy is the identity of the
material. Different materials are “easier” to heat or cool than others. The heat capacity
of water is C = 4184J/kg ·C◦ ≈ 4J/g ·C◦. This can be compared to other materials like air
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(1), aluminum (0.2), steel (0.5), wood (pine: 1.5), and brick (0.8) (all measured in units of
J/g ·C◦).

These relations are combined in a single mathematical expression. If the temperature
of an object changes by an amount ∆T, then the amount of thermal energy ∆E transferred
into (∆T > 0C◦) or out of (∆T < 0C◦) the object is

∆E = mC ∆T (4.22)

where m is the mass of the object, and C is the heat capacity that’s a property of the object’s
material.

Units of Energy

The Metric unit of energy is the joule. It is defined in terms of mechanical interactions:
the energy transferred by a force of one newton acting through a distance of one metre
(1J = 1N×1m = 1kg ·m2/s2). relative to this unit the heat capacity of water has the value
C ≈ 4J/g ·C◦.

Another unit of energy was defined by the properties of water. A calorie is defined to the
amount of energy required to increase the temperature of one gram of water by one degree
Celsius. Measured relative to this unit the heat capacity of water is exactly C = 1cal/g ·C◦.
This means that

1cal= 4.184J (4.23)
0.239cal= 1J (4.24)

Remember it this way: the calorie is a slightly larger unit of energy than the joule, and so
energies measured in calories will have smaller numbers. (This unit is sometimes referred
to as the “thermodynamic calorie”.)

Unfortunately there is a different commonly-used unit that is also called a “calorie”.
This is the nutritional calorie. It is denoted by “Cal”, with the leading “c” capitalized. A
nutritional calorie is a thousand thermodynamic calories:

1Cal= 1000cal= 1kcal= 4184J= 4.184kJ (4.25)

This unit is useful in the human context because: the masses (of water in the body) involved
in metabolic processes are on the order of tens of kilograms; and the typical nutritional
energy content of a single meal is on the order of hundred of thousands of joules. (Be very
careful reading and writing energies in terms of “calories” – know which one is being used!)

4.3.2 Transfer of Thermal Energy

How can thermal energy be transferred?

“Heat”

For historical reasons an amount of thermal energy that is in the process of being trans-
ferred is called heat and is symbolized by the letter Q. Be careful with the distinction,
that thermal energy in the object is just thermal energy, but that thermal energy being
transferred to or from an object is “heat”. Alternatively, heat is thermal energy in transit.
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Conduction

When two objects of different temperature are in contact thermal energy flows from the
hotter object to the cooler object until they are at the same temperature. This is an experi-
mental fact. But what’s happening that makes this so?

If two objects touch each other thermal energy can be transferred from one to the other.
At the atomic scale it is the molecules in one object (that are wiggling around because of
their thermal, incoherent kinetic energy) colliding with the molecules in the other object.
These collisions transfer (incoherent) kinetic energy; that is, they transfer thermal energy.

If the temperatures are the same, the transfers are equal, and the net (total) transfer
is zero (each gains from the other what it loses). But when the temperatures are different,
more thermal energy is transferred from the hotter towards the colder than from the colder
towards the hotter. As their temperatures approach being equal the net transfer decreases
towards zero.

Direct Contact versus Conductive / Insulating separator. (This will be explored quanti-
tatively in subsection 4.3.4.)

The word “flow” is used to talk about the transfer of thermal energy. Have it clear in
your mind that no material is moving from one object to the other. The word “flow” is used
because of the similarity in the mathematics that describes this transfer with the math that
describes gasses flowing diffusively. We will speak about the “flow of thermal energy” even
though no matter is moving or being transferred.

Convection & Advection

If a warm object is touching a cooler fluid material (a liquid or a gas), thermal energy trans-
ferred from the object to the fluid can be carried away from the object by the fluid’s flow.

When a fluid’s temperature increases it expands, so its density decreases relative to the
surrounding fluid. The difference in buoyant forces will cause this warming volume of fluid
to rise and the nearby cooler fluid to sink. This motion will carry away some of the object’s
thermal energy, and will also bring a new quantity of cooler fluid back into contact with the
object. This can start a larger flow in the volume of the fluid, which helps keep the process
going. This type of fluid motion driven by the transfer of thermal energy is referred to as
convection, and sometimes more specifically as convective cooling.

When the transfer of thermal energy is what drives the fluid flow it is referred to as
convection. But when it is an external cause forcing the flow of the fluid (like wind, or a
fan) is referred to as advection. In deep winter the phenomena of wind chill is an example
of advective cooling. The central processing unit (CPU) of a computer usually has a fan
mounted on top of it aimed to drive cooler air into contact with the CPU.

But advection can also bring thermal energy to an object. So-called “convection ovens”
are actually using advection to drive hot air over the object (in the case of an oven, the
object is the food being cooked). If the food is cooler than the air being advected around it,
then the food takes thermal energy from the air; the air gets cooler and the food gets hotter.
Advection then replaces the cooled air with new, hotter air, driving the process of cooking
forwards.

In both cases Convection and Advection moves the medium into contact with the ob-
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ject, increasing the difference in temperature at the surface of contact, thereby increasing
conduction, driving the process of thermal energy transfer.

Radiation

The word “radiation” means energy being transported from place to place without a trans-
port of material. Strictly speaking “sound” (the topic of chapter 5) is acoustic radiation,
“light” is electromagnetic radiation, and the heat that you feel from a hot stove-top is ther-
mal radiation.

Visible light is electromagnetic radiation, but is not the full spectrum.

Light in the infra-red portion of the spectrum transfers thermal energy. This is the
“heat” that you feel at a distance from a large fire, or a heating element on a stove.

Evaporation & Condensation

Liquid at the surface of a hot object can absorb thermal energy from the object and transform
to its vapour phase, which then leaves the object’s surface, taking that thermal energy with
it. This is referred to as evaporation, and sometimes more explicitly as evaporative cooling.

The reverse of this process is condensation. Vapour in the air surrounding a cold object
can transform to its liquid phase when it lands on the surface. During this transformation
from vapour to liquid the vapour must release thermal energy (since this is the reverse of
boiling where the fluid absorbs thermal energy). This thermal energy is then transferred to
the object, increasing its temperature.

4.3.3 Transformation to Thermal Energy

The transformation of other forms of energy into thermal energy.

Dissipative interactions: friction and fluid drag.

4.3.4 Power

Recall from sub-section 0.1.6 the defining property of a rate:

change= rate× time (4.26)

The rate at which energy is transferred or transformed is called power:

∆Energy=Power×Time (4.27)

(Remember that the prefixed symbol “∆” means “change in . . . ”.) Mathematically we write

∆E = P ×∆t (4.28)

P = ∆E
∆t

(4.29)

With energy measured in joules and time in seconds the units of power are watts: 1W= 1J/s.
(Note carefully!: the “t” in the denominator “∆t” is a lower-case “t” denoting time, not an
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upper-case “T” denoting temperature.) In that expression ∆E is the amount of energy that
is being transferred or transformed, and P is the rate at which that process if happening.

In the case of thermal energy being transferred, the expression for power is

P = Q
∆t

(4.30)

where Q is the total thermal energy transferred during the time interval ∆t.

Conduction

In the case of conduction of thermal energy through a boundary between two objects (or
systems) is given by the expression

P = Q
∆t

=K
A
L

(T2 −T1) (4.31)

This equation tells us the rate at which thermal energy is transferred into object 1 from
object 2 when they are separated by a boundary. The greater the area A of contact, the
faster thermal energy will be transferred. The greater the thickness L of the boundary, the
slower thermal energy will be transferred. The physical property of the boundary material
that governs how fast heat can flow through it is its thermal conductivity, symbolized by K .

When object 2 is hotter than object 1 (T2 > T1) the power calculated by the above equa-
tion is positive P > 0 W, which means that thermal energy is flowing into object 1 from
object 2.

Sometimes the expression above is taken in the context of an enclosed system and its
surrounding environment:

P =K
A
L

(
Tenv −Tsys

)
(4.32)

where Tenv −Tsys is the temperature difference across the boundary (between the system
inside the boundary, and the environment outside the boundary). As before when this quan-
tity is positive, it means that thermal energy is being transferred into the system, while
negative would mean that thermal energy is leaving.

4.3.5 Achieving Thermal Equilibrium

It is a physical Law that thermal energy will spontaneously flow from a hotter object to a
colder object. The thermal energy lost by the hotter object is gained by the cooler object. As
time goes on, the temperature of the two objects tend towards a single common temperature
that is between their two initial temperatures.

Experiment finds that the energy lost by one object equals the energy gained by the
other:

∆EA +∆EB = 0J (4.33)

This is a manifestation of the principle of the conservation of energy.

The equation above shows that if, for example, object A cools (∆EA < 0 J as thermal
energy leaves) then object B will warm (∆EB > 0 J as thermal energy enters). With sufficient
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time the temperature of each object will change and approach a common value Tf. The
details are as follows:

∆EA +∆EB = 0J (4.34)
mA CA∆TA +mB CB∆TB = 0J (4.35)

mA CA (Tf −TAi)+mB CB (Tf −TBi)= 0J (4.36)
(mA CA +mB CB)Tf − (mA CA TAi +mB CB TBi)= 0J (4.37)

The result is that the common final temperature of the two objects will be

Tf =
mA CA TAi +mB CB TBi

mA CA +mB CB
(4.38)

This weighted-average of the two initial temperatures will always be between the two. (The
combination of factors mC is referred to as the thermal mass of the object.)

In the case that the two objects are the same material, the value of the heat capacity is
a common factor in the numerator and denominator which cancels. In this case the final
temperature is given by the simpler expression

Tf =
mA TAi +mB TBi

mA +mB
(4.39)

This will used in cases where, for example, we mix two volumes of water together.

4.4 Kinetic Energy

If you open up any standard physics textbook one of the first forms of energy discussed is
always kinetic energy. You may even remember it from high school:

K = 1
2 mv2 (4.40)

This formula says that: a larger mass has more kinetic energy than a smaller mass traveling
at the same speed; and, an object traveling a larger speed has a larger amount of kinetic
energy.

The expression 1
2 mv2 also shows the units that compose a joule. With mass in kilograms

and speed in metres per second, a joule is defined as

1 joule= 1J= 1kg ·m2/s2 (4.41)

It is relative to this definition that the heat capacity of water (4182J/kg ·C◦) has its value.

Kinetic energy is the energy of motion: of something with changing position, orientation,
or shape. To get an object moving I have to make an effort and transfer some energy to it.
To stop an object from moving I have to make an effort and transfer some energy out from
it, or make it interact with some other object / objects that will absorb some of its energy.

There are a few different ways that something might move:

• it might move along a straight line from one place to another
• it might turn without going anywhere
• it might wiggle or bend or move back-and-forth repeatedly (vibrate or oscillate)
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• its atoms / molecules might be jiggling without breaking their mutual bonds

The energy associated with motion from place to place is called linear kinetic energy. The
energy associated with turning is called rotational kinetic energy. The other forms of motion
can become very complicated to describe, so we will begin with just linear and rotational for
now.

4.4.1 Linear Kinetic Energy

Motion is about the position of pieces of material changing. The most basic type of motion is
linear motion. In this type of motion the object, as a whole, moves from place to place along
a straight line. Each piece of the object moves in the same direction and travels the same
distance.

The measurement of the rate of change of position is speed. The vector that points in the
direction of the object’s motion, and whose magnitude is the speed, is called the velocity. In
the case where linear motion is along the x-axis, the x-component of the object’s velocity is

vx = ∆x
∆t

(4.42)

For motion in three dimensions, there are similar expressions for vy and vz. The object’s
speed is the magnitude of the velocity:

v =
√

v2
x +v2

y +v2
z (4.43)

If the object is composed of N pieces, then the kinetic energy K of the object as a whole is
the sum of the kinetic energies Kn of its pieces. (The subscript “n” on the quantity Kn labels
which of the N pieces we are talking about.)

K =
N∑

n=1
Kn =

N∑
n=1

1
2 mn v2

n (4.44)

If every piece of the object is moving with exactly the same speed (vn = v for all n) then

K =
N∑

n=1

1
2 mn v2

n = 1
2

(
N∑

n=1
mn

)
v2 = 1

2 mv2 (4.45)

where m = ∑N
n=1 mn is the sum of the masses of the pieces, which is the total mass of the

object.

Forces affect Linear kinetic energy (see subsection 4.4.5 below on the subject of “Work”).

4.4.2 Angular Kinetic Energy

When an object rotates or turns about a pivot, the angle that specifies the direction it is
facing changes: ∆θ ̸= 0rad. In this type of motion it is possible for the object to be moving
but going anywhere. Each piece of the object circles about the axis of rotation, while the
object, as a whole, does not change its location (∆x = 0m).
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Angular speed

The rate at which this angle changes is called the angular speed:

ω= ∆θ
∆t

(4.46)

(The symbol for angular speed is the Greek letter omega ω, which is written like a curvy
lower-case double-u.) The units of angular speed are radians per second. If the angles used
to describe the object’s orientation are measured in degrees, then do not forget to convert to
radians before using any of the formulas in this subsection.

Two other common units used to measure the rate of rotation are revolutions per second,
and revolutions per minute (rpm). One “revolution” is a complete rotation: 1rev= 2πrad.

▲FIX: RPM sample calculation / Example

Sum of contributions

v

∆s

When an object rotates or turns about a pivot, each piece is moving on a circle. A piece
that is a distance r from the axis of rotation moves a distance ∆s = r∆θ (by definition of an
angle measured in radians).

If the object turns an angle ∆θ in a time ∆t, then the pieces that are further from the
axis of rotation travel faster:

rB > rA (4.47)
rB∆θ > rA∆θ (4.48)

sB > sA (4.49)
(sB

/
∆t)> (sB

/
∆t) (4.50)

vB > vA (4.51)

This is important because it means that each piece that’s a different distance from the
axis of rotation is traveling a different linear speed, and each piece will make a different
contribution tot he total kinetic energy. Consequently the kinetic energy due to rotation is
not proportional to the total mass of the whole object. The total kinetic energy is

K =
N∑

n=1

1
2 mn v2

n = 1
2

N∑
n=1

mn (rnω)2 = 1
2

(
N∑

n=1
mn r2

n

)
ω2 (4.52)

The sum inside the brackets (
∑

mn r2
n) is not the mass of the object. What is it?
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The Moment of Inertia

The factors of m and r2 in each term of the sum combines information about how the mass
of the system is distributed across its shape relative to the axis of rotation. This quantity is
called the moment of inertia:

I =
N∑

n=1
mn r2

n (4.53)

Kangular = 1
2I ω2 (4.54)

Torques effect Rotational kinetic energy.

▲FIX: EXAMPLES: Include table of moments for simple gemometries, paired with nu-
merical examples of values (ie. equal mass but different shape). Match with examples that
can be compared in the Labs.

4.4.3 Oscillation and Vibration

If the shape of the object is not constant. Waves in chapter 5. Normal modes.

Similar to rotational motion, in this category the object as a whole does not move to a
new location.

4.4.4 Thermal Kinetic Energy

The atoms and molecules that make up any object are all continuously, randomly, wiggling.
This is an experimental fact. Each piece is wiggling in a way that is independent of how
the other pieces are wiggling. The average speed of each piece (as it wiggles back-and-forth)
is dependent upon the temperature of the object: the higher the temperature, the faster
the wiggling; the lower the temperature the slower the wiggling. The limits to this kind of
motion are, of course: if the temperature is too high, then the molecules that make up the
object break away from each other and the object melts or vaporizes; the lowest temperature
would be when the molecules stop moving entirely, which would happen at absolute zero of
temperature T = 0 K.

In contrast to the cases of Linear or Rotational motion (where the object moves coher-
ently as a whole) thermal kinetic energy is the incoherent motion of the pieces of the object
(where each of the pieces move at different speeds and in different directions, independently
of each other).

Friction transforms coherent kinetic energy into incoherent kinetic energy. Microscopic
collisions between the tiny piece of rough surfaces.

4.4.5 Work

Work is Force times Displacement W = Fd.

Component of force that does work.

Component of force that does no work.
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It is only the portion of the force that is parallel to the displacement that transfers energy
to the object, that does work:

W = F cosθ d (4.55)

(where θ is the angle between the force F⃗ and the displacement d). When the displacement
is along the x-axis the expression above can be written

W = Fx∆x (4.56)

Note on units: N×m= kg ·m/s2 ×m= kg ·m2/s2 = J. Also: N= J/m.

Work and Kinetic Energy

When a force is applied to an object, and that object’s motion is effected, we say that work
has been done to the object. The symbol for work is W . The work-kinetic energy theorem of
mechanics states that

∆K =W (4.57)

Work is the amount of energy that is transferred to (or transferred from) and object by an
interaction, manifested as an applied force. (This definition excludes the transfer of thermal
energy.) The portion of the force that does work is the portion that is parallel to the object’s
motion. If the object moves along a distance d, and the angle between that distance and the
applied force is θ, then the work done by that force is:

F d cosθ = Kf −Ki (4.58)

In the case where the object moves along the x-axis this equation is written

Fx∆x =∆K (4.59)

where ∆x = xf − xi is the change in the object’s position, and ∆K = Kf −Ki is the change in
the object’s kinetic energy. This equation is the link between force and energy.

Angular work

Work is “force times displacement”. For linear motion, the displacement is a change in
position, like ∆x. but for angular motion, the “displacement” is a change in angle ∆θ. Force
effects linear motion, but torque effects angular motion. For these reasons, the angular
work done by torque is

W = τz∆θ (4.60)

Because of this, we have that

τz∆θ = Kf −Ki (4.61)

where we must be careful to remember that the form of kinetic energy here is the angular
kinetic energy K = 1

2I ω2.
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Note: Torque is not Work

Work is not torque, and torque is not work. Compare F d cosθ (the definition of work) with
equation 2.6 F d sinθ. Force along the displacement of the object does work. (The cosine
finds the component parallel to the distance.) Force around a pivot applies a torque. (The
sine finds the component perpendicular to the distance from the pivot.) In both cases there
is a force and a distance. But in the case of torque the distance from the pivot is not changing
and no work is done along that direction.

Another detail to note is the units of the quantities involved. The angular displacement
∆θ is measured in radians. Remember that 1rad= 1m

/
1m= 1 is actually just a pure num-

ber, without units. (We write “radians” next to an angular quantity more as a reminder than
anything else.) N×m= kg ·m/s2 ×m= kg ·m2/s2 = J.

Angular work and Stability

Work required to counteract sway. Displacement of center of mass relative to base of support
(linear displacement relative to surface versus angular displacement relative to “pivot”.)

▲FIX: EXAMPLE?

4.4.6 Power

Power measures the rate at which energy is transferred or transformed. In the case of
kinetic energy

P = ∆K
∆t

(4.62)

Efficiency

What fraction of the total energy used actually accomplished work.

4.5 Elastic Potential Energy

You know that it takes effort to stretch an elastic band. You have to apply forces to the ends
of the elastic to separate the ends: you apply a force across a distance, hence doing work
to the elastic. If you stretch and then hold an elastic, your effort (the work that you did to
stretch it) is stored in it as elastic potential energy. This energy you can get back as kinetic
energy if you let the elastic launch itself.

4.5.1 “Potential”?

The energy of motion, which you can see, versus the forms of energy that you can’t see.

Any form of energy that can be transformed back into kinetic energy is, for historical
reasons, referred to as being potential energy (is in “it might, potentially, become energy we
can see”).
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Since the agent of transformation is interaction in the form of a force, we HERE.

There are other forms of potential energy (gravitational and electrical being the most
important ones), and we will discuss those in section 4.7.

4.5.2 Elastic Force

Our old friend from subsection 3.3.2: Hooke’s law

F = kx (4.63)

To know which way this force acts you must be very careful with identifying the object.

4.5.3 Energy stored in Deformation

The area under the stress-strain curve. Area under the force–displacement, and the work
done.

The maximum amount of energy just before failure. Relate to biomechanics and injury.

4.6 Pressure

Imagine an inflated balloon. The gas inside is exerting a pressure on the skin of the bal-
loon, pressing outwards. This pressure is a force distributed across the inner surface of the
balloon.

Imagine now that nothing was constraining the size of the balloon; that this force could
continue to push on the skin of the balloon, and the balloon could continue to expand. Two
things would happen:

• The pressure would do work as this force acted across the distance traveled by the
skin of the balloon, (W = F∆x = P A∆x).

• The pressure would decrease as the volume increased (remember the ideal gas law
P = nRT/V ).

Work would be done by the pressure as the balloon expanded, but should be finite because
the pressure would be decreasing, and would approach zero.

Considering the work done, where does this energy come from? The answer is that the
pressure is a measure of the energy content U of the gas. Detailed calculation can show that

P = cU
/

V (4.64)

(where the coefficient 1/3 ≤ c ≤ 2/3 is a property that depends upon the type of gas). This
says that pressure is a measure of the energy density (J/m3) of the gas that can do work.
Conversely this says that pressure is a measure of the work that had to be done to compress
the gas into the volume V .

▲FIX: Pressure as it relates to energy density, and fluid flow.

Ch.4 Energy 143 Text for PPT {α13} October 24, 2022



4.7 Interactions

Interactions between objects can transfer and transform the different forms of energy. When
describe a collection of interacting objects as the system, their interactions are also inside
the system. When this is done we find that a new category of energy is present: the category
of potential energy.

4.7.1 Work versus Potential Energy

The relation between work and kinetic energy we have seen before:

∆K =W (4.65)

We would use this form of energy equation when the system is a single object, and the only
form of energy we need to consider is the object’s kinetic energy. In this context there is a
force whose cause is outside the “system” that is changing the system’s energy (the kinetic
energy).

Introduced in section 4.5 we the idea of forms of energy that could, through interaction,
be transformed and manifest as kinetic energy. Energy of this type was categorized as
potential energy.

4.7.2 Gravitational Interactions

Gravity is the attractive force that each mass exerts on every other mass. This interaction
has three main characteristics:

• It is only attractive. Gravity never causes a mass to repel another mass; it only ever
attracts.

• It is extremely weak. Only masses on the order of the size of moons and planets exert
significant gravitational forces on other masses.

• The strength of the gravitational attraction decreases with separation between the
masses. Mathematically |FG| decreases with separation as 1/r2.

The decrease with distance is why the moon (whose mass is 1/81 of Earth’s mass) at a dis-
tance of 3.85×10+8m causes the ocean tides, but Jupiter (whose mass is 318 times Earth’s
mass) at a distance of 7.78×10+11m (about 2000 times further away) exerts almost no mea-
surable force on Earth-bound objects. As mentioned previously in subsection 1.2.4, the only
gravitational force that will matter for you is Earth’s field.

Since gravity is attractive between masses, it would take work to separate them. This
might remind us of when we pull on opposite ends of a spring or elastic, where it takes work
to pull the ends further apart.

Context: near the Earth’s surface. Changes in height.

∆UG = mg∆h (4.66)

Falling. Rising and Falling. Trajectories.

Context: not near the Earth’s surface. Orbits.
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4.7.3 Contact Interactions & Work

Pushing, pulling. Compression or Tension (“pressure” vs stress terminology). Friction.

Collisions. Transformation of Kinetic to. . . Bouncing, bending, breaking.

4.7.4 Electromagnetic Interactions

(Covered in much more detail in later chapters.)

Electric charges. Interacting charges.

Electric dipoles. Interacting dipoles.

Electric currents. Electrical Potential Energy. Circuits.

Interacting currents. Magnetic dipoles. Interacting dipoles.

Ch.4 Energy 145 Text for PPT {α13} October 24, 2022



Chapter 5

Waves

In your Electrotherapy course you will learn about using ultrasound equipment for ther-
apy purposes. To prepare for that, we need to help you understand how to think about and
analyze waves.

When you read the word “wave” you might imagine a large wave on the ocean, perhaps
with a little surfboarder riding it. Yes, that is an example of a wave, but there are many
other kinds of waves.

There are waves that we can see. Waves on the surface of water, and waves moving along
a stretched string or rope are examples of what are called mechanical waves. These waves
are referred to as “mechanical” because it is the motion of material (atoms and molecules)
that make up the parts of the wave. (The exception of wave you can see but that is not
mechanical is light.)

There are waves that we can’t see. Sound is the best example of this. Obviously you hear
sound, you don’t see it, but you know that air is a material. If you wave a large fan with
your hand, you can feel resistance; when the wind blows, you can feel it move your hair or
clothes. Sound is a mechanical wave in this material. (Experiments can be done to prove
that sound is a wave, and we might have some time to explore these during the semester,
but it will not be our focus.) Understanding and being able to analyze sound waves in air
and in water are the primary goal of this chapter.

Electrical signals, in wires and across wireless, are also waves that you can not see.
These waves are not sound. These waves are not carried by material moving around. Un-
derstanding what electrical waves are will be the focus of chapter 6.

It may seem overwhelming that there are so many different kinds of waves, but we are
lucky. All these seemingly different kinds of waves can be described using the same concepts
and using similar mathematics. To help us grasp the concepts this chapter will focus on
mechanical waves, specifically waves on a rope, and on sound waves in air and in water.
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5.1 What is a Wave?

The examples mentioned in the introduction are meant to help you see that you already do
know something about waves. To go forward we will now investigate how to think quantita-
tively about waves. We will first identify the physical elements and motions of a wave. Once
we have done that we will find that a wave is not an object: a wave is not material moving
from one place to another, it is energy moving from one place to another.

5.1.1 The Three Elements of a Wave

Imagine you are holding one end of a long rope that is stretched between you and another
person. To make a wave travel across the rope from you to the other person you would take
your end and wiggle it up and down. The wiggles you just made would then appear to move
along the stretched rope towards the other person. If you were to look closely at pieces of
the rope in the segment between the two of you, you would see that the pieces of the rope
move up and down as those wiggles passed.

There is no part of the rope that moves from your end to their end. The piece that you are
holding never leaves your hand. After you stop wiggling your end, and the wave is finished,
the rope is back to how it was before you started wiggling. Each piece of the rope is back in
its original position. (This is in contrast to a situation like throwing a ball back-and-forth,
where the material of the ball changes its location.)

So that we can discuss quantitatively and precisely what is happening we need to intro-
duce some terminology. A wave has these three elements:

• the medium
• a source, that produces a disturbance of the medium
• propagation of the disturbance across the medium

In the example above: the stretched rope is the medium; you wiggling your end of the rope
are the source; and those wiggles traveling towards the other person is a physical process
called propagation. These concepts are very general, and apply to waves of all types.

For most of these first few sections of this chapter our development will focus on the
example of waves traveling on a rope. Just remember that the concepts and mathematics
for waves traveling on a rope apply equally well to other types of waves. Recall this in
section 5.5, when we turn to studying sound waves.

the Medium

Different portions can have different deformations.

Examples of media. Gas, liquid, solid, biological. (Light: medium is space itself!)

Importance of the equilibrium configuration. What constitutes a disturbance. The idea
of the “displacement” relative to the equilibrium.

the Source

Examples of sources; things that can cause “disturbances” of the equilibrium.
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Properties of a periodic source: amplitude and rate of displacement. For mechanical
waves the energy content (and through the rate, the power) will be determined by what
work the source does to the material of the medium.

Propagation

The interacting pieces of the medium that create propagation. Details in the section 5.2.

5.1.2 A Wave is not an Object

The wave is not an object. Notice how the piece of rope that you are holding in your hand
does not move away from you and travel towards the other person. The piece in your hand
remains in your hand. The material of the medium does wiggle as the wave travels from you
to them, but after the wave is done the rope is as it was before; the rope has not traveled,
and the piece that was in your hand is still in your hand. So what moved along the rope?

Transfer of energy across the medium, not material. Keeping track of the energy (kinetic
and elastic). Dissipation of energy (see Attenuation, below).

5.1.3 Graphs of Waves

The displacement from equilibrium is a function of two variables: when you look at the
wave, and which piece of the medium you choose to watch. The when is obviously time, the
variable t. The choice of which piece of the medium you watch is specified by a value of x
(position) along the medium.

Note : Graphs of Waves

When reading a graph of a wave first look at the axes of the graph and note the units
of the axes. Is the horizontal axis time, or is it position? This will tell you which type of
graph you are reading, and what information you can hope to gain from reading it.

Plotting the displacement as a function of position x is like taking a photograph. This
graph will be a representation of the wave, but only at a single, specific instant t in time.
To choose a value of x on that graph is to choose a specific piece of the medium at that time.
Reading the graph at that choice of x then tells you its displacement from equilibrium at
the time t that the graph represents.

Plotting the displacement as a function of time t is watching the displacement of a spe-
cific piece of the medium. This graph is a representation of the motion of a specific piece of
the medium whose equilibrium position is x. This graph is the kind of position-time graph
that you have seen before in your high school physics course.

We will sometimes need both representations because the displacement as a function of
time (the motion of the pieces of the medium) is what the source controls, while the dis-
placement as a function of position (the “photograph” at a specific instant) is what we would
naturally think of as the “wave”. Being able to read graphs of these types and extracting
information from them are skills we will practice in the exercises.
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5.1.4 Types of Waves

In the category of mechanical waves, waves can be classified by the way in which the medium
is displaced from its equilibrium. The categories follow those we saw in chapter 3 when we
studied deformation: Compression, Tension, Shear, and Torsion. To make sense of these we
will now study a specific example of a wave: the pulse.

5.2 Pulses

The medium in equilibrium. Producing a single pulse.

5.2.1 Motion of the Medium

A qualitative examination of the physics of wave propagation. The way in which the pieces
interact to produce this propagation. The physics of how the properties of the medium
determine the speed of wave propagation.

The idea of displacement.

[[diagram: time series of a pulse moving across a chain clearly showing the motion of
each link in sequence.]]

Distinguishing between the wavespeed and the particle speed.

Location of the pulse as a function of time

xf = xi +v∆t (5.1)

where v is the wavespeed of the medium. (The last term is +v∆t if the wave is traveling
towards the right, and would be −v∆t if the wave was traveling towards the left.) This equa-
tion has the same mathematical form as the description of an object moving at a constant
speed. Though it looks the same, it not describing the position of an object. It is describing
the position of the disturbance as a function of time. Remember that the disturbance is not
an object; the disturbance is just that portion of the medium that is not in its equilibrium.
The remarkable fact about this equation is that it is true independent of the shape of the
pulse.

Proof of wavespeed constancy???

The position of the particles of the medium do not follow any simple mathematical ex-
pression. Their motion is determined entirely by the shape of the pulse. Since the pulse may
have almost any shape at all the motion of the particle can not be written out as a formula
that is independent of the wave.

5.2.2 Mechanics of a Wave

A close look at the motion of the pieces of the medium, and their connections. Forces causing
the changing motion (oscillation) of the particles.

Properties of the Medium: Density and Elasticity. How difficult is it to get the medium
moving (mass from density). How easy is it for a disturbance to propagate to neighboring
pieces (elasticity).
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Energy is the next section. Kinetic energy of each piece. Elastic energy (or energy density
in Pressure) between pieces.

Do we need to discuss superposition???

5.2.3 Categories of Wave

Forces between the particles of the medium are the cause of the wave’s propagation. We
know from chapter 3 that forces exerted on a material cause deformation. If you recall from
chapter 3 there were different categories of deformation: tension or compression, shear, and
torsion. Each category of deformation has corresponding category of wave type.

Transverse waves. In the case of a rope (or other medium that is much thinner than it is
long), fluctuations in position or elastic deformation and hence tension in the medium. The
tension connecting the particles of the medium propagate the wave. In the case of a solid
(like the ground), shear stress propagates the wave.

Longitudinal waves. In the case of a fluid (gas or liquid), fluctuations in pressure in the
medium. In the case of a solid, compression and tension.

There are also torsional waves, but we are not going to study them in any detail. If we
were studying to engineer vehicles then we would need to know about these types of wave.
But, in the context of Physiotherapy Technology, we don’t need to spend any time on them.

Electromagnetic waves. Light (not covered in this course), and Electrical Current (chap-
ter X).

Here are a few examples that are really, really outside this course: Gravity Waves; Traffic
waves; Matter Waves in Quantum Mechanics; Chemical and Biological waves. Ask me about
them, if we have spare time!

5.3 Energy Transport

A close look at the motion of the pieces of the medium, and their connections. Kinetic energy
of each piece. Elastic energy (or energy density in Pressure) between pieces.

Transfer of energy across the medium, not material.

Keeping track of the energy (kinetic, and elastic or pressure).

Dissipation or transformation of energy (see Attenuation in subsection 5.3.4).

5.3.1 Energy in a Wave

In the case of mechanical waves the source does work to the material to set it into motion.
The work transfers energy into the medium. As the wave propagates across the medium it
carries this energy. What forms of energy are present in the wave? The answer will depend
upon the medium, but in the case of mechanical waves there will always be a contribution
of kinetic energy. This is because the pieces of the medium are wiggling as the wave passes
across them.

Presence of elastic energy, or energy stored as pressure in the gas/liquid.
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5.3.2 Work done to the Medium

In mechanical waves work must be done to the material of the medium to cause its motion.

Relation between the rate of oscillation (the frequency) and the rate of energy (power)
being put into the medium.

The power transport by the wave. Careful to distinguish between amount (energy) and
rate (power).

5.3.3 Waves in 2 & 3 Dimensions

A wave traveling along a string or rope is the easiest to see, draw or think about. That
is an example of a wave traveling along a one-dimensional medium. Waves that travel on
the surface of water are waves traveling in two dimensions. Sound waves in air are waves
traveling in three dimensions.

The idea of wave-front.

The spreading of energy (), qualitatively.

Defining intensity?

Intensity= Power
Area

(5.2)

In the case of spherical wave-fronts, the inverse-square law in three dimensions:

I = P
4π r2 (5.3)

5.3.4 Attenuation

The absorption or dissipation of energy (attenuation). The attenuation of mechanical waves
due to internal friction or viscosity.

The exponential decrease with depth of the intensity.

Dependence on material and frequency.

(Discussed further in subsection 5.6.3.)

5.3.5 At a Boundary: Reflection & Transmission

Waves at a boundary between media: reflection or transmission.
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5.3.6 Across a Boundary: Refraction

5.3.7 Around Obstacles: Diffraction

5.4 Periodic Waves

5.4.1 Properties of the Source

Amplitude. In the case of mechanical waves the amplitude relates to the physical distance
that the source moves as it disturbs the medium. Be careful of the factor-of-two mistake:
amplitude is half the distance you’d think it would be.

Period of Oscillation. Frequency of Oscillation.

frequency= 1
period

(5.4)

f = 1
/

T (5.5)

The unit of frequency is hertz, abbreviated Hz, and is defined by

1 Hz= 1 repetition
second (5.6)

5.4.2 Properties of the Medium

Properties of the Medium: Density and Elasticity. How difficult is it to get the medium
moving (mass from density). How easy is it for a disturbance to propagate to neighboring
pieces (elasticity).

5.4.3 Properties of the Wave

The resulting wave, and its amplitude. Refer back to the section on energy on how the
amplitude varies with propagation (either inverse-square law spreading, or attenuation).

Due to the periodicity of the source, the periodicity in time of motion in the medium. The
consequent periodicity in space: the wavelength.

5.4.4 The Fundamental Equation

λ= v
/

f (5.7)

. λ
Wavelength

= v

Wavespeed

/ f
Frequency

(5.8)
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5.4.5 Modulated Waves

The periodic wave, with constant amplitude and uniformly frequency of repetition, is the
simplest category of waves to describe. But more useful – and common in the context of
Electrotherapy – is the category of modulated waves.

A modulated wave is one with an amplitude that varies with time, a frequency that
varies with time, or both. Most common is the wave with modulated amplitude. The sim-
plest of that type, shown below, is a wave whose amplitude switches between being constant
for an interval of time and being zero for the following interval, with this pattern of on/off
repeating periodically.

t (s)

y (m)

t (s)

A (m)

In this modulated wave there are two repeating patterns: the rapid oscillations of the
wave itself; and the longer period of the wave’s amplitude being modulated.

5.4.6 Examples

5.5 Sound Waves

Strictly speaking, sound refers to the category of longitudinal waves in air that can be
perceived by human hearing. However it is used to refer to the broader category of all
longitudinal material waves, or “sound” in any material, like in soup, sand, or even inside
the Sun. In the context of this course our focus is on sound in air, water, and the human
body.

5.5.1 Sound in Air

The speed of sound in air varies with temperature and humidity. Aside: the speed of sound
in a gas varies with the mass of the atoms or molecules that comprise the gas. The speed of
sound is much faster in Helium, and much slower in Xenon.

Amplitude of Pressure fluctuations, relative to equilibrium atmospheric pressure. Mag-
nitude of fluctuations: tiny!

Examples of frequency and wavelength in normal sounds.
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5.5.2 Sound as a Longitudinal Wave

The displacement being parallel to the propagation. The difficulty to draw. Search the web
for animations and movies.

Shockwaves

When the source moves faster than the speed of sound. When the amplitude exceeds the
wavelength. Shockwaves.

5.5.3 Human Hearing

Anatomy. Mechanical motion to nerve impulses (transduction).

Sensitivity. Range of frequencies / wavelengths (floppiest to stiffest components). Range
of pressure fluctuation amplitudes (threshold of detection to threshold of damage).

Cite Nobel lecture (Medicine, 1961) by Georg von Békésy on the mechanics of the inner
ear.

Recommend the TED talk by Bobby McFerrin on singing musical notes that you don’t
know you know.

5.5.4 Sound in Water

The speed of sound in water varies with temperature and dissolved chemical content.

Hearing under water.

Shockwaves

When the source (or boundary) moves faster than the speed of sound. When the amplitude
exceeds the wavelength. Shockwaves. Cavitation in ultrasound.

5.5.5 Sound in Other Materials

. [[tables of values of speed of sound in materials]]

Gasses: Air (different temperatures, humidity), Nobel gasses.

Liquids: Water (pure, different temperatures), water (Seawater, different temperatures),
alcohol.

Solids: Ice, Plastic, wood, metal (Aluminum, Steel), concrete. (Difference in speeds de-
pendent on deformation mode: shear, compression, torsion, etc.)

Human Biological context (ranges): Blood, fat, muscle, bone.
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5.5.6 Ultrasound

Sounds we can’t hear.

5.6 Energy in Sound Waves

[[illustration: a loudspeaker producing a sound]]

The kinetic energy in the oscillating air molecules and the work embodied in the change
in pressure.

The idea that sound waves are generated by moving surfaces and received (detected) by
surface that can move.

5.6.1 Definition: Sound Intensity

Intensity= Power
Area

(5.9)

Energy= Intensity×Area× time (5.10)
∆E = I × A×∆t (5.11)

At a position where the pressure fluctuation amplitude is ∆p the corresponding intensity
is

I = (∆p)2

2ρv
(5.12)

In the case of sound waves in air (where ρ = 1.20 kg/m3 is the density of air, and v = 343 m/s
is the wavespeed in air) we get 1

2ρv = 1.215×10−3 m2s
kg . In the case of sound waves in water

(where ρ = 1000 kg/m3 is the density of water, and v = 1481 m/s is the wavespeed in water)
we get 1

2ρv = 0.3376×10−6 m2s
kg .

Difference in pressure required to achieve a target compression (do volume-change work)
in gasses versus liquids.

5.6.2 The Decibel Scale

Sketch a graph of the subjective “loudness versus intensity” curve that motivates the use of
the logarithm.

I

“loudness”
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The quantitative measure β that models subjective loudness is called the sound level,
and is defined by:

β= (10dB) log
(
I
/

I0
)

(5.13)

The logarithm returns a number, and the factor 10 dB expresses the level as a multiple of
the unit decibel (dB) that measures level. The argument of the logarithm is the ratio of the
intensity I of the sound wave to I0 the reference intensity which is defined to be the exact
quantity

I0 = 1×10−12 W/m2 (5.14)

which corresponds (approximately) to the quietest sound that an average person can hear.

DANGER: Some physics textbooks use the phrase “Sound Intensity” for the quantity of
power over area, and use the phrase “Sound Intensity Level” for the measure of subjective
loudness measured in decibels. The key is to look for the presence or absence of the word
“Level” in the descriptor. In this text loudness in decibels is just “Sound Level”.

Comparing: amplitude of pressure fluctuation (pascals); sound intensity (watts per square
metre); and sound level (decibels).

∆p (Pa)

30×10−6

30×10−3

30

I (W/m2)

10−12

10−6

1

β (dB)

0

60

120
For the case of sound waves in air: the ap-
proximate correspondence between pressure
fluctuation ∆p, the corresponding sound in-
tensity I, and sound level β.

[[diagram: “noise thermometer”]]

5.6.3 Attenuation

Experiment finds that, as a function of the distance x traveled into the medium, the inten-
sity I of a wave decreases as

I(x)= I1×10−α x /10dB

x

I

where “I1” is the value of the intensity at the boundary x = 0 m where the wave enters the
medium. The decrease in intensity is due to the material absorbing the energy of the wave,
usually by the transformation of the wave’s mechanical oscillation into thermal energy in
the medium. This dissipation of mechanical energy decreases the amplitude of the wave,
and the wave is said to be attenuated.

The quantity α is called the attenuation coefficient. In the context of ultrasound applied
to humans this coefficient is measured in units of decibels per centimetre (dB/cm), usu-
ally. The attenuation coefficient is a physical property of the medium: it depends upon the
material, the material’s temperature, and the frequency of the wave(!). Generally the atten-
uation becomes much stronger with increasing frequency. (Low frequencies travel further

Ch.5 Waves 157 Text for PPT {α13} October 24, 2022



than medium frequencies, while very high frequencies are absorbed over short distances.)
The value of the attenuation coefficient is determined experimentally, though it can some-
times be determined theoretically. For us, it will be a value that is given, or a value to be
solved-for from the relationship with intensity and distance.

Since the initial sound intensity relates to its level through I1 = I0×10β1 /10dB the atten-
uation, as written in the equation above, is equivalent to saying that the sound level is a
linear function of distance the wave travels into the medium:

β(x)=β1 −αx (5.15)

Because of this fact the attenuation coefficient is determined by measuring

α=−∆β/
∆x (5.16)

The attenuation coefficient equals the slope of the plot of sound level as a function of depth
into the material:

x

β

Imagine a wave of intensity I1. Passing through a medium that absorbs energy (the wave
is attenuated) this intensity will decrease to value I2. How does the change in intensity
relate to the change in level?

Consider this example: If 80% of the energy has been absorbed, then the intensity has
dropped to 20% (which is one-fifth) of its initial value I2 = 1

5 I1. This can be written as
I2/I1 = 1/5. The change in sound intensity level is thus

∆β=β2 −β1 (5.17)

= (10dB)log
(

I2
I0

)
− (10dB)log

(
I1
I0

)
= (10dB)log

(
I2
I0

/ I1
I0

)
= (10dB)log

(
I2
I1

)
(5.18)

= (10dB)log(1/5)= (10dB)(−0.699)=−6.99 dB (5.19)

This uses the fact that log A− logB = log(A/B).

In general, a drop in sound intensity to a fraction I2/I1 = s < 1 of its initial value leads to
a change in sound level by an increment

∆β= (10dB)log s (5.20)

Since s < 1 and thus log s < 0, we will find that ∆β< 0 dB. The negative sign in the defined
α=−∆β/

∆x is required because α is a positive quantity and ∆β< 0 dB by attenuation.

5.7 Light & Electromagnetic Radiation

5.7.1 Light

The speed of light. Wavelength and frequency. Intensity and Energy.

Electromagnetic waves. Photons?
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5.7.2 Invisible Light

Longer wavelengths. Infra-red. Microwaves. Radio waves.

Shorter wavelengths. Ultra-violet. X-Rays. Gamma rays.

5.7.3 “Radiation”

Particles versus Electromagnetic waves. Effects on biological tissue.

5.7.4 The Effects of Light on People

5.8 Examples
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Chapter 6

Electricity
The word “electricity” maybe makes you think of tuning on a light in a room, or charging

your cellphone. Powering a computer, moving the trains of the metro, or heating your house.
Those are examples of what electricity can do. But what is electricity? This question is easy
to pose, but very difficult to answer. This chapter will guide us towards being able to think
physically about what electricity is, and what electricity can do.

There is just one thing that I will need you to never forget while studying this chapter:

DANGER: I am not a physiotherapist! :DANGER

In clinical settings you will be using electricity to apply physiothereputic treatments to
people. You might think that it is unsafe to mix people with electricity. This is true in the
same sense that there are dangers associated with driving a car. But when used properly,
these technologies can be highly beneficial. You will learn proper and safe clinical tech-
niques in your Electrotherapy course. In this course you will learn about what electricity is.
Following the analogy of the car I will not be teaching you how to drive, I will be teaching
you how the engine operates. Just never confuse anything in this course with advice on how
to drive.

6.1 Electric Charges & Forces

What is “electricity”? The short answer is “the energy of interacting charges”. To understand
this we have to start with defining what charges are and how they interact.

Once we have done that we will able to talk about the controlled interaction of charges
which form the basis of electric circuits. With the goal being preparation for your Elec-
trotherapy course, in this course we need to get to a place where we can think about when
the patient is part of the circuit.

6.1.1 Atoms: Electrons & the Nucleus

6.1.2 Electric Charge

In terms of electric force and sorting into categories of attract/repel. Sign convention.

For historical reasons the symbol used to denote charge is q. Usually lower-case q is
used to denote the charge of atomic particles like electrons, protons, and ionized atoms,
or the charge of microscopic particles like macromolecules or dust. (A little q for a little
charge.) The upper-case Q is usually used to denote the charge of macroscopic objects. We
will use ∆Q to denote the change

Difference between charge of the object’s constituents and the net charge of the object.
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Size of a charge relative to the macroscopic unit. The coulomb is huge in comparison
to the charge of a single proton. (One coulomb is the charge of 6.241×10+18 protons!) But
we can’t be too mad about that: The coulomb was decided upon A LONG TIME before the
existence of atoms was agreed upon.

The charge of a single electron is

−1.602×10−19 C (6.1)

The charge of a single proton is the positive of this.

6.1.3 Electric Forces

Referring back to section 1.2, where we mentioned how we rarely “see” electrical forces.
Strength of electric force. Comparison with gravity.

6.1.4 Magnetic Forces

Interactions between moving charges. Magnetic forces.

6.2 Electric Current

6.2.1 Conductors, Insulators, and In-Between

Terminology: the conducting medium.

Current Carriers: electrons in orbitals, or ions in solution.

[[picture: mixture of ions of different sign flowing in opposite direction, net flow of “posi-
tive” current.]]

The “Conventional Current” is related to the sum of q⃗v for all current carriers.

Electrons moving one way, and “current” flowing the other. Sad.

6.2.2 Measuring Current

An ampere is one coulomb per second:

1 ampere= 1
coulomb
second

(6.2)

1A= 1C/s (6.3)

The abbreviation “amps” is often used in place of the word “amperes”, most frequently when
prefixes are present. For example, milliamperes are referred to as “milliamps”.

The symbol used to denote current is I. This is unfortunate, since it will be confused
with intensity that we used in context of sound waves, but is unavoidable. We are stuck
with this historical convention. It will be up to you to be vigilant and know the meaning of
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the symbol by its context. This job will be much easier if you keep track of the units. (It
should be impossible to mix-up a coulomb per second with a watt per square metre!)

Relation to a mole of electrons moving through a certain wire at a certain speed.

Measure of total charge transferred (ampere-seconds or ampere-hours).

Cases when the current flows in a single direction are referred to as Direct Current, ab-
breviated as DC. The current may change in amount, but if its direction does not change it is
still considered DC. The cases where the direction does change are referred to as Alternating
Current, abbreviated as AC.

6.2.3 Alternating Current (AC)

This looks like a wave, but it is not. This is a graph of our measurement of current a one
place in the conductor. This is analogous to watching the motion of a single particle in the
medium.

6.2.4 “Current Waveforms”

The current can vary with time in many more different, general ways.

6.2.5 Biological Currents

Dissolved ions. Charged species. Net flow of positive charge.

Ion channels. Concentration gradients and voltages.

Nerve impulses. Muscle activation.

6.2.6 Safety

Disruption of muscle activation. Disruption of nerve impulses. Damage of tissues by ther-
mal energy. Disruption of heart rhythm. Disruption of brain function.

6.3 Electric Energy

Compare and contrast with the other forms of energy.

6.3.1 Sources of Electrical Power

Batteries convert chemical energy into electrical energy. Chemical reactions as reconfigu-
rations of electrons in orbitals. Chemically induced separation of charge. (Importance in
relation to biochemical reactions that are electro-chemical.)

Generators use magnetic forces to create currents. Mechanical work is transformed into
electrical energy.
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6.3.2 Electric “Potential”

The analogy between electrical potential energy and gravitational potential energy. The
concept of electrical potential (which is distinct from electrical potential energy).

[[diagrams: The Analogy. Columns: force; field; energy; potential. Rows: Gravitational;
Electrical.]]

When the electrical potential is different at different positions in or on an object we speak
of the electrical potential difference across the object.

Differences in electrical potential are measured in units of volts. A volt is a joule per
coulomb:

1 volt= 1
joule

coulomb
(6.4)

The symbol for potential is V . Sad.

6.3.3 Transfer versus Transform

Electrical current transfers electrical energy.

Current traveling from place to place transfers electrical energy. Current carriers inter-
acting with the conducting medium transforms electrical energy into other forms of energy.

6.3.4 Electric Resistance

Dissipation of energy. Transformation of electrical energy into thermal energy.

The current carriers transport at least two forms of energy. They have kinetic energy
because they have mass and are moving. They have electrical energy because they have
electric charge and are moving across a difference in electrical potential.

The electric energy changes, the kinetic energy does not. The current is constant even
as the electrical energy is being transformed. Current flowing through a resistor dissipates
electrical energy into thermal energy. Current itself (the moving current carriers) are not
“used up”. The current entering the resistor is the same as the current leaving the resistor.

The unit of resistance is the ohm, symbolized by the capital Greek letter omega: Ω.

There is a relationship between the current I through a conductor and the potential
difference ∆V across it. The relation is known as Ohm’s Law:

∆V = I R (6.5)

The AC case. Definition of average that is non-zero. The RMS and Peak values, related.
Emphasize that Ohm’s Law is true for instantaneous values, so that it holds for the peak
values and for the average.

6.3.5 Electric Power

The rate of energy transfer and/or transformation. Even though electrical energy is distinct
from the other forms, it is still energy. The rate of electrical energy transfer or transforma-
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tion is also measured in watts (joules per second).

P = I∆V = I2R (6.6)

The AC case.

[[diagram: graph of AC power, and the way in which we get the "1/2" factor by chopping
the tops off the "cos-squared" graph.]]

Pavg = 1
2 I2

avg R (6.7)

6.3.6 Safety

Your skin, when dry, has a high electrical resistance (VALUE). But your insides are filled
with highly conductive fluids.

6.4 Electric Circuits

When current travels along a wire, where does it go? It does not just arrive at the end of a
wire and “pile up” or “fall out”!

The loop.

6.4.1 Circuit Elements

The source versus the elements of the circuit.

The battery and the resistor [electrical to thermal]. The battery and the light-bulb (or
LED) [electrical to luminous]. The battery and the motor.

6.4.2 Series/Parallel

Multiple elements.

Terminology: Junction

Terminology: Branch

Series: The current is the same through each circuit element. The voltage across the
group is the sum of the voltages across each element.

Parallel: The voltage is the same across each branch. The sum of currents entering a
junction equals the sum of currents leaving the junction.

6.4.3 Power in a Circuit

Power put in by the source. Power divided across the elements. Power division across
elements in series. Power division across elements in parallel.
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6.4.4 Circuits with Time-Varying Current

“Electrical Waves” (cf section X on current above).

6.4.5 Safety

The role of “ground”. “Short circuits”. You should never be a part of the circuit!

6.5 Examples
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